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Supplementary Material

1. Detailed derivation
The derivation of Equation 4 in the main paper is eluci-
dated in detail herein. By introducing an inference model
q (z, zn|x,y), we decompose log p (y|x) into the following
two terms:

log p (y|x) = Eq(z,zn|x,y) log
p (y, z, zn|x)
q (z, zn|x,y)

+

(
log p (y|x)− Eq(z,zn|x,y) log

p (y, z, zn|x)
q (z, zn|x,y)

)
,

(1)
where the first term represents the cELBO. The second term
can be expressed as follows:

log p (y|x)− Eq(z,zn|x,y) log
p (y, z, zn|x)
q (z, zn|x,y)

=Eq(z,zn|x,y)

[
log p (y|x)− log

p (y|x) p (z, zn|x,y)
q (z, zn|x,y)

]
=Eq(z,zn|x,y) log

q (z, zn|x,y)
p (z, zn|x,y)

=DKL (q (z, zn|x,y) ||p (z, zn|x,y)) .
(2)

According to the proposed graphical model (as depicted in
Figure 1a in the main paper), we have

p (y, z, zn|x) =p (z|x) p (zn|x, z) p (y|x, z, zn)
=p (z|x) p (zn|z) p (y|z, zn) ,

p (z, zn|x,y) =p (z|x,y) p (zn|x,y, z)
=p (z|x,y) p (zn|y, z) .

(3)

To maintain consistency with the decomposition of
p (z, zn|x,y), we choose

q(z, zn|x,y) = q(z|x,y)q(zn|y, z). (4)

Consequently, the cELBO can be further factorized as

Eq(z,zn|x,y) log
p (y, z, zn|x)
q (z, zn|x,y)

=Eq(z,|x,y)q(zn|y,z) log
p (z|x) p (zn|z) p (y|z, zn)

q (z|x,y) q (zn|y, z)

=Eq(z,|x,y)q(zn|y,z) log p (y|zn) + Eq(z,|x,y) log
p (z|x)

q (z|x,y)

+ Eq(z,|x,y)q(zn|y,z) log
p (zn|z)

q (zn|y, z)
=Eq(z,|x,y)q(zn|y,z) log p (y|zn)−DKL (q (z|x,y) ||p (z|x))
− Eq(z|x,y)DKL (q (zn|y, z) ||p (zn|y, z)) .

(5)

Figure 1. Architecture of degradation level prediction network.

2. Proof for Proposition 1
Proposition 1. Let q(z|x,y) be a mixture model of q(z|x)
and q(z|y):

q(z|x,y) = p1q(z|x) + p2q(z|y), (6)

then:

DKL(q(z|x,y)∥p(z|x)) ≤p1DKL(q(z|x)∥p(z|x))
+p2DKL(q(z|y)∥p(z|x)).

(7)

Moreover, suppose that q(z|x) = p(z|x) by sharing the
same neural network. Then:

DKL(q(z|x,y)∥p(z|x)) ≤ p2DKL(q(z|y)∥q(z|x)) (8)

Proof. Using the log-sum inequality, we have:

DKL(q(z|x,y)∥p(z|x))
=DKL(p1q(z|x) + p2q(z|y)∥p1p(z|x) + p2p(z|x))

=

∫
(p1q(z|x) + p2q(z|y)) log

p1q(z|x) + p2q(z|y)
p1p(z|x) + p2p(z|x)

dz

≤
∫

p1q(z|x) log
p1q(z|x)
p1p(z|x)

+ p2q(z|y) log
p2q(z|y)
p2p(z|x)

dz

=p1DKL(q(z|x)∥p(z|x)) + p2DKL(q(z|y)∥p(z|x)),
(9)

then (7) holds. Furthermore, since we can parameterize
q(z|x) and p(z|x) with the same distribution, then q(z|x) =
p(z|x), and (7) is reduced to (8).

3. Architecture of the degradation level predic-
tion network

We incorporate the standard deviation of the noise, along
with the noisy image from the target domain, into our
SeNM-VAE model to enable controlled generation of
degradation levels. Specifically, we concatenate the degra-
dation level with bl

n (see Equation 19 in the main paper)



to enable conditional generation during both training and
generation processes. Since the noisy image from the tar-
get domain lacks the corresponding clean image, its degra-
dation level cannot be directly determined. Therefore, we
introduce a degradation level prediction network trained on
data from the paired domain and use it to predict the noise
standard deviation for data from the target domain. The ar-
chitecture of this network is illustrated in Figure 1. Our
approach has been shown to successfully generate images
with varying input noise levels, as demonstrated in Figure 2.

4. Experiment
4.1. Implementation details

Computation of KL divergence. We use KL divergence to
evaluate the fidelity of generated noisy images. The KL di-
vergence between two images can be calculated as follows:

DKL(I1, I2) =

255∑
i=0

p(I1 = i) log
p(I1 = i)

p(I2 = i)
. (10)

Training details of DnCNN. We train all DnCNN [20]
models for 300k iterations using the Adam optimizer [7].
The initial learning rate is set to 10−4 and halved every
100k iterations. The batch size is 64, consisting of randomly
cropped patches of size 40×40. Random flips and rotations
are applied to augment the data. We evaluate the perfor-
mance every 5k iterations on the SIDD validation dataset
and select the model with the highest PSNR to evaluate on
the benchmark set.
Training details of DRUNet. All DRUNet [21] models are
trained for 300k iterations using the Adam optimizer [7].
The initial learning rate is set to 10−4 and halved every
100k iterations. The batch size is 16, consisting of ran-
domly cropped patches of size 128× 128. We augment the
data by applying random flips and rotations. We evaluate
the performance every 5k iterations on the SIDD validation
dataset and select the model with the highest PSNR to eval-
uate on the benchmark set.
Training details of NAFNet. We finetune the pre-trained
NAFNet [1] on synthesized training set. The model is
trained for 400k iterations with Adam optimizer [7]. The
initial learning rate is set to 10−5, and we use the cosine
learning rate decay schedule. The batch size is 2, and the
patch size is 256 × 256. We evaluate the denoising perfor-
mance every 20k iterations on the SIDD validation dataset
and select the model with the highest PSNR to evaluate on
the benchmark set.
Training details of ESRGAN. We use the training code
from Impressionism [6] and train the ESRGAN [14] model
for 60k iterations. The initial learning rate is set to 10−4

and halved at 5k, 10k, 20k, 30k iterations. The batch size is
16, consisting of randomly cropped patches of size 128 ×

Method # Paired Data PSNR ↑ SSIM ↑
C2N [5]

0
33.95 0.878

DeFlow [17] 33.81 0.897
LUD-VAE [22] 34.82 0.926

SeNM-VAE
0.01% (10) 36.68 0.931
0.1% (96) 36.89 0.928
1% (960) 37.24 0.938

DANet [18]
100%

36.20 0.925
Flow-sRGB [8] 33.24 0.876
NeCA-W [4] 36.95 0.935
SeNM-VAE 38.27 0.946
Real noise 100% 38.31 0.946

Table 1. Comparison of denoising results on SIDD benchmark.
DnCNN [20] is used as a downstream denoising model.

Method # Paired Data PSNR ↑ SSIM ↑
C2N [5]

0
36.08 0.903

DeFlow [17] 36.71 0.923
LUD-VAE [22] 37.60 0.933

SeNM-VAE
0.01% (10) 37.94 0.936
0.1% (96) 38.21 0.942
1% (960) 38.44 0.943

DANet [18]
100%

38.21 0.943
Flow-sRGB [8] 36.09 0.895
NeCA-W [4] 38.70 0.946
SeNM-VAE 39.09 0.950
Real noise 100% 38.83 0.949

Table 2. Comparison of denoising results on DND benchmark.
DnCNN [20] is used as a downstream denoising model.

128. Random flips and rotations are applied to augment the
data. We use the model at 60k iterations to evaluate the final
performance.

4.2. Benchmark results

We replenish Table 1 in the main paper with the denoising
results of DnCNN [20] on the SIDD and DND benchmarks.
These results are shown in Table 1 and Table 2. Compared
to the unpaired noise modeling methods, our method yields
superior denoising results, even with 10 paired samples.
Notably, as the number of paired samples increases, our
method consistently exhibits the most effective denoising
performance across both benchmarks. This further attests
to the competitive advantage of our method in producing
high-quality synthesized noisy images.

4.3. Model complexity

The proposed SeNM-VAE can effectively utilize a lim-
ited amount of paired data together with unpaired data to
enhance the generation of high-quality training samples,
without necessitating extensive computational resources.
Specifically, the total number of parameters in our model
amounts to 9.946M, with a total FLOPs of 617.36G re-
quired to generate a single 256 × 256 × 3 image. Addi-
tionally, training can be completed within approximately 2
days on a single Nvidia 2080 Ti GPU on the SIDD dataset.
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Figure 2. Visual results of degradation level controllable generation on SIDD validation dataset, σ denotes the input degradation level. The
model is trained with 10 paired data on the SIDD dataset.

During the inference stage, generating 1,280 images takes
around 31 seconds.

4.4. Training stability

The overall training objective of SeNM-VAE consists of
three parts. Firstly, it involves maximizing the conditional
log-likelihood function, log p (y|x), through variational in-
ference methods and the proposed mixture model, encom-
passing three key elements:

Eq(z|x,y)DKL (q (zn|y, z) ||p (zn|z))
−Eq(z|x,y)q(zn|y,z) log p (y|z, zn)
+λDKL (q (z|y) ||q (z|x)) .

(11)

Another component comprises a regularization term,
namely Eq(z|x,y) log p (x|z). This term plays a crucial role
in enhancing the reconstruction capability of the source do-
main data, especially since the terms in (11) do not directly
regulate the source domain data. To augment the genera-
tive capacity of the VAE model, we incorporate the LPIPS
loss and GAN loss to complement the loss function for
noisy image reconstruction, constituting the third part of
the loss function. In our experiments, we train our model
using the conventional ADAM optimizer [7] with its de-
fault settings. Employing standard training techniques in
VDVAE [2], we observe stable convergence performance,
as depicted in Figure 3.

4.5. Degradation modeling in real-world SR

As a complementary investigation to the noise synthesis ex-
periment presented in the main paper, we conduct analo-
gous assessments to evaluate the quality of the generated
training pairs in real-world SR tasks. The configuration for
training the degradation modeling methods remains con-
sistent with that outlined in the downstream SR experi-
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Figure 3. Loss curve of SeNM-VAE during training. Our model
converges to the minimum steadily and uniformly, regardless of
the quantity of paired samples utilized.

Method PSNR ↑ SSIM ↑ LPIPS ↓
FSSR 20.97 0.5383 0.374

Impressionism 21.93 0.6128 0.426
DASR 21.05 0.5674 0.376

DeFlow 21.43 0.6003 0.349
LUD-VAE 22.25 0.6194 0.341

SeNM-VAE 22.37 0.6307 0.335
Table 3. Comparison of SR performance on AIM19. SeNM-VAE
is trained with 10 paired data.

ment. Subsequently, we train the ESRGAN [14] model us-
ing paired data derived from the comparison methods. The
resultant metrics, including PSNR, SSIM, and LPIPS, on
both the AIM19 and NTIRE20 datasets, are detailed in Ta-
bles 3 and Table 4, respectively. These results demonstrate
the effectiveness of our semi-supervised approach in learn-
ing the degradation model in real-world SR scenarios.

4.6. Effects of varying mixture weights

In our main paper, we define the inference model q (z|x,y)
as a linear combination of two mixture components q (z|x)



Method PSNR ↑ SSIM ↑ LPIPS ↓
FSSR 21.01 0.4229 0.435

Impressionism 25.24 0.6740 0.230
DASR 22.98 0.5093 0.379

DeFlow 24.95 0.6746 0.217
LUD-VAE 25.78 0.7196 0.220

SeNM-VAE 25.91 0.7212 0.216
Table 4. Comparison of SR performance on NTIRE20. SeNM-
VAE is trained with 10 paired data.

and q (z|y), expressed as:

q (z|x) = p1q (z|x) + p2q (z|y) ,

where p1 and p2 are mixture weights. In this experiment, we
investigate the impact of different p1 and p2 values. Given
that p2 = 1 − p1, we evaluate five cases for p1 using the
SIDD dataset, each with 10 paired samples. As shown in
Table 5, the noisy data generated by SeNM-VAE achieves
the minimum FID and KLD values when p1 = 0.5, while
the downstream denoising network (DnCNN [20]) exhibits
its highest PSNR when p1 = 0.7.

p1 0.1 0.3 0.5 0.7 0.9
FID ↓ 17.39 18.27 17.25 19.20 17.99
KLD ↓ 0.037 0.044 0.036 0.039 0.044
PSNR ↑ 36.48 36.28 36.73 36.98 36.72

Table 5. Comparison of noise quality on SIDD validation dataset.
DnCNN [20] is used as a downstream denoising model.

5. Visual results
Owing to the space constraints within the main context,
we exhibit additional visualizations of synthetic noise, real-
world denoising results, and real-world SR results as a sup-
plement.

5.1. Noise synthesis

We present synthesized noisy images generated by SeNM-
VAE trained with varying numbers of paired data. Further-
more, we conduct a comparative analysis with fully-paired
deep noise modeling methods, including DANet [18], Flow-
sRGB [8], and NeCA-W [4]. The visual results on the SIDD
validation dataset are depicted in Figure 4.

5.2. Real-world denoising

Downstream denoising. We employ DRUNet [21] as the
downstream denoising model and train it on the paired
domain alongside synthetic paired samples generated by
SeNM-VAE. We compare our semi-supervised denoising
method with direct training on the paired domain and
several self-supervised denoising methods, namely CVF-
SID [11], AP-BSN + R3 [9], SCPGabNet [10], and

SDAP(S)(E) [12]. Denoising results on the SIDD validation
dataset are displayed in Figure 5, Figure 6, and Figure 7.
Finetune denoising. We perform fine-tuning on
NAFNet [1], a pre-trained denoising model, using addi-
tional training samples generated by SeNM-VAE trained
with full paired data from the SIDD training dataset. The
finetuned NAFNet is compared against its original version
as well as three alternative methods, namely Uformer [15],
MAXIM [13], and Restormer [19]. Denoising results on the
SIDD validation dataset are presented in Figure 8.

5.3. Real-world SR

SeNM-VAE is also employed to simulate the degradation
process of real-world SR tasks. We leverage ESRGAN [14]
as the downstream model. Our semi-supervised SR method
is compared with a supervisedly trained ESRGAN, along
with five unpaired degradation modeling methods, namely
FSSR [3], Impressionism [6], DASR [16], DeFlow [17],
and LUD-VAE [22]. Evaluation is conducted on the AIM19
and NTIRE20 validation datasets. Visualizations of the SR
results are provided in Figure 9, Figure 10, Figure 11, and
Figure 12.



Figure 4. Visual comparisons of noise generation on the SIDD validation set. KLD value is reported as the performance metric.



Figure 5. Visual comparisons of downstream denoising results on the SIDD validation set. Performance metrics, including PSNR and
SSIM values, are reported for evaluation.



Figure 6. Visual comparisons of downstream denoising results on the SIDD validation set. Performance metrics, including PSNR and
SSIM values, are reported for evaluation.



Figure 7. Visual comparisons of downstream denoising results on the SIDD validation set. Performance metrics, including PSNR and
SSIM values, are reported for evaluation.



Figure 8. Visual comparisons of fine-tuned denoising results on the SIDD validation set. Performance metrics, including PSNR and SSIM
values, are reported for evaluation.



Figure 9. Visual comparisons of real-world SR results on the AIM19 validation set. Performance metrics, including PSNR, SSIM, and
LPIPS values, are provided for evaluation.



Figure 10. Visual comparisons of real-world SR results on the AIM19 validation set. Performance metrics, including PSNR, SSIM, and
LPIPS values, are provided for evaluation.



Figure 11. Visual comparisons of real-world SR results on the NTIRE20 validation set. Performance metrics, including PSNR, SSIM, and
LPIPS values, are provided for evaluation.



Figure 12. Visual comparisons of real-world SR results on the NTIRE20 validation set. Performance metrics, including PSNR, SSIM, and
LPIPS values, are provided for evaluation.
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