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A. Standard Diffusion Model
Diffusion model is a novel generative model based on
the Markov Chain, which contains a non-parameter noise-
adding forward process and a denoising reverse process. We
show the details of each process below.

A.1. Forward Process

In the forward process, diffusion model gradually adds
noise to an image, the one-step noise adding could be writ-
ten as follows:

xt =
√
αtxt−1 +

√
1− αtϵt−1, (1)

where α is the manually designed noise coefficient variation
over time t and ϵ is the added noise. Based on the theory
of Markov Chain, it could be approximated to the formula
which could diffuse to any-step with only one step:

xt =
√
αtx0 +

√
1− αtϵ, (2)

where αt =
∏t

i=1 αi, ϵ is the random Gaussian noise.

A.2. Reverse Process

In the reverse process, diffusion model recovers the target
sample from the standard Gaussian noise step by step (e.g.,
xT , xT−1, . . . , x1, x0), which could be written as:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σ
2
θ(xt, t)), (3)

where µθ and σ2
θ is the mean and variance of the distribution

pθ(xt−1|xt), θ means the term is obtain by the model.
There are two widely used sampling strategies in the re-

verse process of diffusion model: DDPM [2] like full-step
sampling and DDIM [13] like skip-step sampling.
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Table S1. Summary of the datasets used in the paper.

Dataset Train set Test set

Dehazing
OTSALPHA [6] 313950 -
SOTS [6] - 500

Low-light enhancement
LOL [15] 485 15
DICM [5] - 64
MEF [9] - 17
NPE [14] - 8

Merged Deraining
Rain800 [18] 700 100
Rain1800 [16] 1800 -
Rain14000 [1] 11200 2800
Rain1200 [17] - 1200
Rain12 [7] 12 -
Rain100H [16] - 100
Rain100L [16] - 100
Practical [16] - 15

Merged Desnowing
Snow100K [8] 50000 -
Snow100K-L [8] - xxx
Snow100K-S [8] - xxx
Snow100K-Real [8] - 1329

Merged Debluring
GoPro [10] 2103 1111
HIDE [12] - 2025
RealBlur-R [11] - 980
RealBlur-J [11] - 980

Under-Display Camera
POLED [19] - 30
TOLED [19] - 30
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Figure S1. Visualization comparison with state-of-the-art methods on dehazing. Zoom in for best view.

For DDPM sampling strategy, it denoises step by step as
mentioned above, the equations are as follows:

µθ(xt, t) =
1

√
αt

(
xt −

βt√
1− αt

ϵθ (xt, t)

)
, (4)

xt−1 = σθ(xt, t)z + µθ(xt, t), (5)

where xt is the recovered image in timestep t, ϵθ is the noise
predicted by the model, βt = 1 − αt, σθ(xt, t) can be de-
signed manually and z is the random Guassian noise.

For the DDIM sampling strategy, diffusion model per-
forms the skip-step operation. For instance, the whole
timestep is 1000 and DDIM sampling strategy could ac-
celerate it into 5 steps (i.e., 1000, 750, 500, 250, 0). The
formula is:

xt−1 =
1

√
αt

(
xt −

√
1− αtϵθ(xt, t)

)
+
√
1− αt−1ϵθ (xt, t) .

(6)

Note that there is no extensive random noise term as the
deterministic implicit sampling equation [13] sets the noise
coefficient as 0.

A.3. Training Objective

The simple version of the training objective is calculated as
follows:

Lsimple = Ex0,ϵ

[
∥ϵ− ϵθ

(√
αtx0 +

√
1− αtϵ

)
∥2
]
, (7)

where x0 is the input image, ϵ is the noise established in
forward process.

B. Summary about the Datasets
The overall datasets we used in the paper are shown in Ta-
ble S1. We use the largest and most widely known datasets
for each task to validate our DiffUIR in universal image
restoration and real-world generalization settings.

C. Complete Derivation of our DiffUIR
As the derivation of the distribution approaching forward
process is complete in the paper, we present the complete
version of distribution diffusing reverse process and univer-
sal training objective here.

C.1. Distribution Diffusing Reverse Process

In the reverse process, we recover the sample from the
shared distribution (e.g., IT = (1 − δT )Iin + βT ϵ) to the
task-specific distribution. Following the DDPM [2], we use
the q(It−1|It, Iin, Iθ0 , Iθres) to simulate the distribution of
pθ(It−1|It) and based on the Bayes’ theorem, we could cal-
culate it as follows:

pθ(It−1|It) → q(It−1|It, Iin, Iθ0 , Iθres)

= q(It|It−1, Iin, I
θ
res)

q(It−1|Iθ0 , Iθres, Iin)
q(It|Iθ0 , Iθres, Iin)

,
(8)

where q(It|It−1, Iin, I
θ
res) could be calculated by the equa-

tion in the paper of Line 231; q(It−1|Iθ0 , Iθres, Iin) and
q(It|Iθ0 , Iθres, Iin) is calculated by Eq (4) in the paper. As
our goal is to represent the distribution of pθ(It−1|It) by
the mean and the variance. We rearrange it to the proba-
bility density function form of the normal distribution (i.e.,

f(x) = 1√
2πσ2

e−
(x−µ)2

2σ2 ) by utilizing the probability den-
sity function of the three terms above. As the mean and
variance could be calculated by the exponential term of the
probability density function, we only consider this term as
follows:

q(It|It−1, Iin, I
θ
res)

q(It−1|Iθ0 , Iθres, Iin)
q(It|Iθ0 , Iθres, Iin)

∝ exp

[
−1

2
(
(It − It−1 − αtI

θ
res + δtIin)

2

β2
t

+
(It−1 − Iθ0 − αt−1I

θ
res + δt−1Iin)

2

β
2

t−1

− (It − Iθ0 − αtI
θ
res + δtIin)

2

β
2

t

)

]

= exp

[
−1

2
((

β
2

t

β2
t β

2

t−1

)I2t−1 − 2(
It + δtIin − αtI

θ
res

β2
t

+
Iθ0 + αt−1I

θ
res − δt−1Iin

β
2

t−1

)It−1 + C(It, I
θ
0 , I

θ
res, Iin))

]
.

(9)
Based on the Eq. (9) and the property of the probability
density function of the normal distribution, the mean and



Table S2. Ablation study on batch size.

Batch size Deraining (5sets) Enhancement Desnowing(2sets) Dehazing Deblurring
PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

1 27.07 0.849 16.83 0.528 29.37 0.892 30.24 0.951 26.77 0.812
2 27.69 0.865 17.01 0.544 30.13 0.901 31.23 0.953 26.87 0.812
5 30.68 0.897 25.23 0.910 32.09 0.923 30.68 0.952 29.10 0.863
10 31.03 0.904 25.12 0.907 32.65 0.927 32.94 0.956 29.17 0.864

Snowy Image Prompt-IR DA-CLIP Ours GroundTruthAirNet

Figure S2. Visualization comparison with state-of-the-art methods on desnowing. Zoom in for best view.

Table S3. Ablation study on sampling steps.

Task 3 steps 5 steps 10 steps
PSNR SSIM PSNR SSIM PSNR SSIM

Deraining 31.03 0.904 31.06 0.904 31.09 0.905
Low-light 25.12 0.907 25.17 0.907 25.31 0.908
Dehazing 32.94 0.956 33.00 0.956 33.06 0.956

variance of the distribution pθ(It−1|It) could be calculated
by “− b

2a” and “ 1
a”. The results are as follows:

µθ(It, t) = It − αtI
θ
res + δtIin − β2

t

βt

ϵθ

σ2
θ(It, t) =

β2
t β

2

t−1

β
2

t

,

(10)

where Iθres is predicted by the model and ϵθ is obtained by
the Iθres. Based on the reparameterization [3, 4] technology,
if we use the sampling strategy from the DDPM [2], It−1

could be calculated as follows:

It−1 = It − αtI
θ
res + δtIin − β2

t

βt

ϵθ +
βtβt−1

βt

ϵ∗, (11)

where ϵ∗ is the random Gaussian noise. In this paper, to
accelerate the sampling speed, we use the deterministic im-
plicit sampling strategy of DDIM [13], based on Eq. (3) in
the paper, the It−1 is as follows:

It−1 = Iθ0 + αt−1I
θ
res − δt−1Iin + βt−1ϵ

θ, (12)

as Iθ0 could be transformed to It − αtI
θ
res − βtϵ

θ + δtIin,
the formula is calculated by:

It−1 = It − (αt − αt−1)I
θ
res

− (βt − βt−1)ϵ
θ + (δt − δt−1)Iin

= It − αtI
θ
res − (βt − βt−1)ϵ

θ + δtIin,

(13)

as in our implementation, the value of βt − βt−1 is nearly
zero and has no impact on the performance, we eschew this
term. The final version of our DDIM sampling is:

It−1 = It − αtI
θ
res + δtIin. (14)

C.2. Universal Training Objective

Here we show how we derive from Eq. (10) to Eq. (11) in
the paper. Based on the Eq. (4) in the paper, the ϵθ and ϵ
could be calculated as follows:

ϵθ =
It − Iθ0 − αtI

θ
res + δtIin

βt

=
(1− αt)I

θ
res + δtIin

βt

.

(15)

ϵ =
It − I0 − αtIres + δtIin

βt

=
(1− αt)Ires + δtIin

βt

.

(16)
Incorporating Eq. (15) and (16) into Eq. (10) in the paper,
one obtains:

L(θ)simple = Et,It,Ires

[
∥ − αt(Ires − Iθres(It, t))

+
(1− αt)β

2
t

β
2

t

(Ires − Iθres(It, t))∥1

]
= Et,It,Ires

[
∥C(α, β, t)(Ires − Iθres(It, t))∥1

]
,

(17)
where C(α, β, t) is a constant that has no effect on the train-
ing objective, eschewing this term, the final version of our
universal training objective (e.g., Eq. (11)) is obtained.

D. More Experimental Results
D.1. Ablation Study

Impact of the batch size. We show the result in Table S2. It
could be seen that when the batch size is small, the perfor-
mance of different tasks varies largely as the model could
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Figure S3. Visualization comparison with state-of-the-art methods on real-world dehazing. Zoom in for best view.

Rainy & Hazy Image Prompt-IR DA-CLIP OursAirNet

Figure S4. Visualization comparison with state-of-the-art methods on real-world multi-degradation scenarios. Our method achieves out-
standing success benefitting from the selective hourglass mapping. Zoom in for best view.

not learn the shared distribution among all of the tasks in
one batch. Additionally, the performance of batch size 10
surpasses the 5 as when batch size reaches 10, we adjust the
weight of different tasks in one batch based on the size of
the datasets. The whole results validate that the number of
batch size is significant for our universal image restoration
learning.
More sampling steps. We show the result of three degra-
dation tasks in Table S3. The performance is improved
with more sampling steps which is similar to the property
of other diffusion methods. What’s more, the experiment
validates that our modification of the diffusion algorithm is
rational and rigorous.

D.2. Visual Comparison

We show the visualization results of dehazing, desnowing
and real-world generalization in Fig. S1 to Fig. S4 respec-
tively. Our DiffUIR generates more steady and fidelity im-
ages than other universal image restoration methods. Espe-
cially, when various degradation occurs in one image, ben-
efiting from the selective hourglass mapping, we achieve
outstanding recovery results, which validate our motivation
in the paper of Line 44.
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