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1. Comparison with More State-of-the-Art
In this section, we expand our comparison by including ad-
ditional diffusion-based SR methods to further validate the
effectiveness of our proposed Self-Adaptive Reality-Guided
Diffusion (SARGD) method. Table 1 presents a comparison
of more state-of-the-art Diffusion-SR techniques, including
LDM [2], StableSR [3], ResShift [5], PASD [4], and Diff-
BIR [1], across benchmark datasets for super-resolution at
a scale of ×4. The results demonstrate that our training-free
SARGD method consistently outperforms these competing
methods in terms of both PSNR and SSIM metrics across
all datasets.

The SARGD method achieves the highest PSNR values,
indicating superior image quality with fewer artifacts and
distortions when enlarging images. Specifically, it reaches
a PSNR of 32.27 on Set5, 30.01 on Set14, 30.23 on B100,
27.93 on Urban100, and 30.23 on Manga109, marking it as
the leader in generating high-fidelity images across diverse
types of content, ranging from natural scenes in B100 to the
intricate details found in Manga109.

Similarly, the SARGD’s performance in SSIM, a met-
ric that measures the perceptual quality of images and
their structural similarity to the original, further solidifies
its advantage. With scores of 0.871 on Set5, 0.778 on
Set14, 0.763 on B100, 0.771 on Urban100, and 0.851 on
Manga109, SARGD proves its efficacy in maintaining the
structural integrity and textural details of the original im-
ages while upscaling, which is crucial for applications re-
quiring high visual fidelity.

The quantitative results underscore the effectiveness of
the SARGD approach in delivering high-quality, artifact-
free super-resolution images. This superiority is particu-
larly noteworthy considering the evaluation was conducted
on a 32G GPU, which reflects a significant computational
efficiency alongside its superior performance. These out-
comes not only demonstrate the practicality of SARGD in
resource-constrained environments but also highlight its po-
tential for widespread adoption in applications requiring
high-resolution image processing.
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Table 1. Quantitative comparison with the state-of-the-art
Diffusion-SR methods across benchmark datasets for super-
resolution at ×4 scale. Bold highlights the best performance.
All evaluations are conducted on a 32G GPU. Our training-free
SARGD attains the most favorable results.

Dataset Metric LDM StableSR ResShift PASD DiffBIR Ours

Set5 PSNR ↑ 28.30 29.36 31.74 32.04 30.16 32.27
SSIM ↑ 0.769 0.812 0.863 0.860 0.817 0.871

Set14 PSNR ↑ 27.21 28.04 29.18 29.60 28.72 30.01
SSIM ↑ 0.696 0.733 0.760 0.770 0.719 0.778

B100 PSNR ↑ 27.67 28.40 29.40 29.79 29.50 30.23
SSIM ↑ 0.679 0.717 0.732 0.747 0.718 0.763

Urban100 PSNR ↑ 25.91 26.55 27.87 26.70 26.54 27.93
SSIM ↑ 0.719 0.744 0.769 0.707 0.703 0.771

Manga109 PSNR ↑ 27.04 27.94 29.71 28.38 27.47 30.23
SSIM ↑ 0.815 0.838 0.848 0.828 0.791 0.851

2. More Ablation Study

In this section, we conduct additional ablation studies
to thoroughly analyze the effectiveness of our proposed
training-free SARGD method in achieving artifact-free
super-resolution.

Performance of Different Time Steps. Figure 1 presents
a comparative analysis of PSNR performance at scales ×2,
×3, and ×4 between our SARGD and StableSR [3], em-
ploying various inference time steps. The results depicted in
Figure 1(c) show that StableSR’s performance decreases as
the number of total time steps increases, likely due to a po-
tential loss of detail from extended denoising processes. In
contrast, our SARGD demonstrates a gradual improvement
in super-resolution performance, boosting from a PSNR of
29.03 at 25 steps to 29.98 at 100 steps. Despite a minor de-
crease in performance observed between 100 to 200 steps,
the PSNR at each interval remains higher than the score at
25 steps, indicating consistent enhancement over time. This
is attributed to its self-refinement mechanism, which ac-
tively adjusts the middle latent representations to preserve
and improve fidelity throughout the super-resolution pro-
cess. Furthermore, our SARGD surpasses the performance
of StableSR in terms of image quality across different en-
largement scales while also achieving significantly more ef-
ficient processing with a reduction in inference steps from
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Figure 1. Performance comparison between our proposed SARGD and StableSR across various time steps and scales (×2, ×3, and ×4).

200 to just 25. Specifically, the comparative performance
gains of SARGD over StableSR are evident at magnifica-
tions of ×2 (31.06 vs. 27.26), ×3 (30.53 vs. 27.69), and
×4 (29.03 vs. 28.04), indicating a notable improvement in
image quality at these respective scales.

Compares Various Artifact Detections. To verify the ef-
fectiveness of the artifact detection model used in our pro-
posed SAGD method, we compare the performance of dif-
ferent artifact detection methods, including PAL4VST [7]
and PAL4Inpaint [6]. Based on the result presented in Ta-
ble 2, we can draw several observations regarding the per-
formance of different artifact detection methods including
for super-resolution at a scale of ×4 across the Set14 and
B100 datasets.

Firstly, both PAL4Inpaint and PAL4VST demonstrate
significant improvements in PSNR, SSIM, and DISTS
scores compared to the baseline method across both
datasets. PAL4VST particularly stands out with the highest
PSNR and SSIM scores, as well as the lowest DISTS score,
indicating its superior performance in artifact detection for
super-resolution.

Moreover, the effectiveness of artifact detection methods
appears consistent across different datasets, as evidenced by
similar trends in performance across Set14 and B100. This
consistency suggests the robustness of these methods across
various image types and characteristics.

Overall, PAL4VST emerges as the most effective arti-
fact detection method, consistently outperforming both the
baseline and PAL4Inpaint in terms of PSNR, SSIM, and
DISTS scores across both datasets. This highlights its
potential for improving the quality and fidelity of super-
resolved images, making it a promising choice for practical
applications in image enhancement.
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