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Supplementary Material

In this supplementary material, we present ablation stud-
ies that explore the impact of combining different types of
losses and changing the number of basis functions. We
also provide additional details on the implementation and
experiments we conducted. Moreover, we showcase more
qualitative results for dynamic object segmentation. We
also open-source the scripts and code needed to reproduce
all the experiments of our paper, which can be found at
https://github.com/PRBonn/4dNDF

A. Ablation Study

The experiments on static mapping quality focus more on
the result of the surface reconstruction. In order to study
the reconstruction performance in the free space, we chose
the KITTI seq. 05 from KTH-Dynamic-benchmark for the
ablation study.
Influence of loss terms. Tab. 1 presents the impact of
different combinations of losses influences the segmenta-
tion result. Note that we refer to the settings by the letters
(A)–(F) in the first column of Tab. 1 in the following dis-
cussion. From the table, we can observe that only enabling
Lfree, i.e. case (A), alone results in a low score for DA, in-
dicating that a large portion of dynamic objects remain un-
segmented. However, adding of Leikonal simultaneously, i.e.,
case (B), can enhance the result. In case (C), the majority
of dynamic objects can be eliminated by applying Lcertain.
However, since Lcertain is only applied in the densely ob-
served area, split by a hyperparameter rdense, some distant
dynamic points are preserved. By adding Lfree, this prob-
lem can be solved, leading to further improvement in the
result. In Fig. 1, we show qualitatively the influence of the
different parts of the loss.
Influence of number of basis functions. Tab. 2 shows the
impact of using different numbers of basis functions (K) on
dynamic object segmentation result. K = 1 implies the
map degenerates to 3D, which means the output of Dmlp
is a single value representing time-independent signed dis-
tance. This leads to poor performance of both AA and DA.
Increasing the value of K has a direct impact on the map’s
capacity, resulting in more accurate dynamic point segmen-
tation. The optimal performance is achieved when K is set
to 32. Further increasing the value of K does not lead to di-
minishing returns in terms of performance or even a degra-
dation of the results. Therefore, we select K = 32 as the
number of basis functions for all of our experiments in the
main paper.

Table 1. Ablation study of losses combination on KITTI seq. 05
sequence from KTH-Dynamic-benchmark

Lfree Lcertain Leikonal SA DA AA

A ✓ 99.71 45.05 67.02
B ✓ ✓ 99.58 57.68 75.79
C ✓ 99.96 89.11 95.38
D ✓ ✓ 99.11 92.42 95.71
E ✓ ✓ 99.44 99.50 97.45

F ✓ ✓ ✓ 99.54 98.36 98.95

Table 2. Ablation study of the number of basis functions (K) on
KITTI seq. 05 sequence from KTH-Dynamic-benchmark

K SA DA AA

1 91.82 52.59 69.49
4 97.73 95.30 96.51
8 99.55 95.71 97.61

16 97.60 98.06 97.83
24 99.14 97.68 98.41
32 99.54 98.36 98.95
40 96.78 98.57 97.67
48 99.67 98.02 98.84

(a) wo Lfree (b) wo Lcertain

(c) full losses (d) ground truth

Figure 1. Segmentation results on one frame in the ablation study
for losses. (a) shows the result when we turn off Lfree, correspond-
ing to case (D) in Tab. 1, we can see that the moving car far away
from the sensor is not segmented. And turning off Lcertain (case
(B)) leads to poor dynamics segmentation in the dense observed
area, which can be seen in (b).

https://github.com/PRBonn/4dNDF


B. Further Details on Experiments
B.1. Static Mapping Quality

Metrics. We represent the points sampled from ground-
truth mesh or point clouds as Pgt, and represent the points
sampled from estimated mesh as Pes, as detailed below for
the different datasets. Then, we calculate the metrics as be-
low:

Comp =
1

|Pgt|
∑

pgt∈Pgt

min
pes∈Pes

(∥pgt − pes∥), (1)

Acc. =
1

|Pes|
∑

pes∈Pes

min
pgt∈Pgt

(∥pes − pgt∥), (2)

C-L1 =
1

2
(Comp. + Acc.) , (3)

Precision =

∣∣{pes ∈ Pes | minpgt∈Pgt ∥pes − pgt∥ < ξ
}∣∣

|Pes|
,

(4)

Recall =
|{pgt ∈ Pgt | minpes∈Pes ∥pgt − pes∥ < ξ}|

|Pgt|
,

(5)

We report completeness (Comp.), accuracy (Acc.),
Chamfer-Distance (C-L1) and F-score in the main text.
For F-score, we use ξ = 0.1 cm in ToyCar3 dataset and
ξ = 20 cm in the real-world Newer College dataset.

Experiment settings. For ToyCar3 dataset, we down-
sample the accumulated background point cloud with a res-
olution of 0.5 cm and use the resulting point cloud as Pgt.
We then uniformly sample the same number of points as
Pgt on the mesh obtained by the methods and consider it as
Pes. We used a resolution of 0.5 cm for marching cubes to
extract meshes in both our method and SHINE-mapping [4].

For Newer College dataset, we directly use the ground-
truth point cloud collected by high-precision laser as Pgt.
Because the coverage area of GT and the input data differ,
we manually cropped the meshes to make their coverage re-
gions as identical as possible. Then, similarly, we uniformly
sample points with the same number of Pgt on the cropped
mesh and use them as the Pes for evaluation. In this dataset,
we use the resolution of 0.1m for marching cubes.

B.2. Dynamic Object Segmentation

Experiment settings. The KTH dataset contains four se-
quences in total, three of them (KITTI seq. 00, KITTI seq.
05 and Argoverse2) all use 64 beam LiDAR to collect data.
We choose rdense = 15m for the experiments in these se-
quences. For the Semi-indoor sequence, the sensor is a 16-
beam LiDAR, resulting in sparser scans. In this case, we
set rdense = 8m to split the dense and sparse area. Fig. 2
and Fig. 3 demonstrate results of dynamic points removal
in KITTI seq. 00 and KITTI seq. 05. Similar to the re-
sult depicted in the main text, Erasor [2] and Octomap [3]

have a tendency to over-segment dynamic objects, which
results in sparser static point clouds shown in zoomed view
figures. Additionally, Removert [1] struggles with the com-
plete removal of dynamic objects. Our approach achieves
the best performance, with complete removal of dynamic
objects while stably preserving static points. On the Semi-
indoor sequence, there is an object that remains stationary
for a long time, among the methods we tested, only Oc-
tomap successfully removed the object in the final map, thus
achieving the highest score in this case.

C. Further Implementation Details
As mentioned in the main text, we encode geometric infor-
mation using only two levels of feature hashing voxels, i.e.,
F l, with different resolutions in all our experiments. The
highest resolution of the voxel is determined by the scale of
the scene. For the ToyCar3 dataset, it is set to 2 cm, while
for other LiDAR-based outdoor datasets, it is set to 30 cm.
The resolution of the second voxel level is set to 1.5 times
the highest resolution.

For the calculation of Leikonal, we set the perturbation for
the numerical gradient calculation ϵ as :

ϵ =
i(ϵmax − ϵmin)

I
, (6)

where, i is the current epoch, I is the total number of
epochs, which is 20. For outdoor LiDAR scenes, we
set ϵmax = 0.08m, ϵmin = 0.03m. However, for Toy-
Car3 dataset, as the scale is small, we set ϵmax = 0.8 cm,
ϵmin = 0.3 cm.
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(b) Ours

(c) Erasor [2]

(d) Removert [1]

(e) Octomap* [3]

Figure 2. Comparison of dynamic object removal results produced by different methods on the KITTI seq. 00 of the KTH-benchmark. We
display the bird’s eye view of the complete point cloud with a zoomed view from the gray box. For the ground truth in (a), dynamic objects
are marked in red in the bird’s eye view, static points are depicted in the zoomed view for clearer comparison.



(a) Ground truth

(b) Ours

(c) Erasor [2]

(d) Removert [1]

(e) Octomap* [3]

Figure 3. Comparison of dynamic object removal results produced by different methods on the KITTI seq. 05 of the KTH-benchmark. We
display the bird’s eye view of the complete point cloud with a zoomed view from the gray box. For the ground truth in (a), dynamic objects
are marked in red in the bird’s eye view, static points are depicted in the zoomed view for clearer comparison.


	. Ablation Study
	. Further Details on Experiments
	. Static Mapping Quality
	. Dynamic Object Segmentation

	. Further Implementation Details

