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Supplementary Material

A. Supplementary Material Structure

This supplementary material provides additional technical
explanations and experimental validations to support and
expand upon the main text of our work. The contents are
organized as follows:
1. Detailed elaboration of the dynamic topological encod-

ing scheme, Sec. B.
(a) Definition and illustration of essential terms and

concepts, Sec. B.1.
(b) Theoretical foundation and methodology of persis-

tent homology analysis for graph-structured data,
Sec. B.2.

(c) Comprehensive explanation of the adopted vector-
ization representation strategy, Sec. B.3.

2. In-depth discussion of the hyperparameter settings and
optimization of BlockGCN, Sec. C.

3. Extended experimental validations and analysis, Sec. D.
(a) Evaluation and comparison of single modality per-

formance, Sec. D.1.
(b) Investigation of the impact of different graph dis-

tance metrics on model performance, Sec. D.2.
(c) Visual exploration and interpretation of the learned

feature representations, Sec. D.4.

B. Technical Preliminaries

B.1. Fundamentals of Algebraic Topology

Topological data analysis (TDA) [54] leverages algebraic
topology tools, such as persistent homology [22], to ex-
tract topological features, including connected components
and cycles, from graph data that persist across multiple
scales [2]. These topological descriptors have been shown
to be effective representations for graph classification tasks
[52, 75]. Furthermore, integrating these topological fea-
tures with deep learning architectures has achieved signif-
icant success in enhancing the representational power of
the models [18, 31, 47, 69, 72, 75]. In this section, we
first introduce the core notations and concepts, followed by
a general description of persistent homology analysis for
graph data, and finally present a toy demonstration for in-
tuitive understanding. For more detailed descriptions and
formal illustrations of these techniques, we refer the reader
to the corresponding literature in computational topology
and topological data analysis [9, 23, 28].
Simplicial Complex: A simplicial complex is composed
of simplices of different dimensions, such as vertices (0-
simplices), edges (1-simplices), triangles (2-simplices), and
tetrahedra (3-simplices). Given a k-simplex denoted as

� = [v0, ..., vk], deleting one of its vertices vi results in a
(k� 1)-simplex [v0, . . . , v̂i, . . . , vk] (v̂i denotes the deleted
vertex), which is called the i-th face of �. A simplicial com-
plex K is defined as a set of simplices of varying dimensions
that satisfies the following conditions:
1. Any face ⌧ of a simplex � 2 K is also in K (i.e., ⌧ 2 K).
2. If �1,�2 2 K and �1 \ �2 6= ;, then �1 \ �2 is a face of

both �1 and �2.
A graph G is a simplicial complex K consisting only of ver-
tices (0-simplices) and edges (1-simplices).
Boundary Map: Given a simplicial complex K, consider
the vector space C(K) generated with Z2 (the field with
two elements). The boundary map is denoted as @ :
C(K) ! C�1(K). For a k-simplex � = [v0, . . . , vk) 2

K], the boundary map is defined as:

@(�) :=
kX

i=0

(v0, . . . , vi�1, vi+1, . . . , vk) (7)

In other words, each vertex vi of the simplex is omitted
once. The boundary operator @ is a homomorphism be-
tween the simplicial chain groups, providing a precise way
to define connectivity [31].
Homology: Homology theory employs commutative alge-
bra tools to study topological features, such as connected
components ( = 0) and cycles ( = 1) in a graph [23],
using the boundary operator. The -th homology group
H(K) of a simplicial complex K is defined as the quotient
group:

H(K) := ker@/im@+1 (8)

The elements in ker(@) and im(@+1) are called -cycles
and -boundaries, respectively. The resulting homology
groups H(K) are topological invariants that remain un-
changed under homeomorphisms and encode intrinsic in-
formation [28].
Betti Numbers: Betti numbers, defined as the ranks of the
homology groups, serve as simpler invariants for classify-
ing topological spaces. For H(K), the 0-th Betti num-
ber �0 = rankH0(K) represents the number of connected
components, while the 1-st Betti number �1 = rankH1(K)
represents the number of cycles when  = 0 and  = 1,
respectively. However, these counting-based topological
summaries are too coarse to capture the complexity of graph
structures. To address this limitation, a persistent version of
homology-based topological invariant analysis is proposed,
as described in the following section.



B.2. Persistent Homology Analysis for Graphs

In this subsection, we provide an overview of the persis-
tent homology analysis for graphs, followed by an intuitive
demonstration using a 5-node graph example. We then in-
troduce the key notations and concepts for further reference.
Intuitive Demonstration: Consider an undirected graph
G = (V, E) with a vertex set V and an edge set E ✓ V ⇥ V .
Given a threshold value ✏, we can obtain a series of graphs
by setting the edge weights w(✏)

ij to 1 if w(✏)
ij > ✏, and 0 oth-

erwise. Treating the graph G as a simplicial complex K, we
generate a sequence of simplicial complexes, termed as a fil-
tration, {Ki

}
m
i=0, where ; = K

0
✓ K

1
✓ . . . ✓ K

m = K,
by increasing the threshold value ✏. As the filtration param-
eter increases, more edges are removed from the graph. In
extreme cases, when ✏ ! �1, the graph becomes com-
plete, and when ✏ ! 1, the graph reduces to a vertex
set V . For each sub-complex, we record the topological in-
variants, such as connected components and cycles, to de-
scribe the graph structure. During this filtration process,
each topological object (i.e., homology) may appear at a
specific ✏i and disappear at another value ✏j . The interval
{✏i, ✏j} is called its persistence. Persistent homology analy-
sis captures the global structure of graphs by recording these
paired filtration values in the nested sequence. Persistence
barcodes and persistence diagrams are used to represent the
paired set {(b(0)i , d

(0)
i )}ni=1, where D

(0)
i = (b(0)i , d

(0)
i ) and

b
(0)
i , d

(0)
i 2 {✏0, ✏1, . . . , ✏k} for connected components, and

superscripts equal to 1 for cycles.
Figure 7 presents an intuitive demonstration of a 5-node

graph filtration with threshold values ✏ = 0, 1, . . . , 9. As ✏
increases from 0 to 9, edges gradually appear, forming dif-
ferent combinations of connected components and cycles.
For example, when ✏ increases from 0 to 1, the number of
connected components decreases from 5 to 4 as one edge
emerges. When ✏ increases from 2 to 3, a cycle appears
and persists until ✏ = 9. Through this counting and record-
ing process, the geometrical structure of a weighted graph
is explored globally.
Persistent Homology: Given a filtration of K denoted as
{Ki}

m
i=0, we have a corresponding sequence of chain com-

plexes C(Ki). The concept of homology groups is ex-
tended from H

i
(K) := ker@i

/im@
i
+1 (dependent on a

single simplicial complex K
i) to its persistent version (from

K
i to K

j) as:

H
i,j
 (K) := ker@i

/(im@
j
+1 \ ker@i

) (9)

The ranks of all the homology groups �
i,j
 = H

i,j
 (K)

(namely the -th persistent Betti numbers) capture the num-
ber of homological features of dimensionality  (e.g., con-
nected components for  = 0, cycles for  = 1, etc.) that
persist from i to (at least) j [29].
Persistence Barcodes of Filtration: For simplification,

Figure 7. A graph filtration with ✏ = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 (from
left to right): (a) the persistence barcodes of connected compo-
nents (up) and cycles (down); (b) corresponding persistent dia-
gram of connected components (red disk) and cycles (blue trian-
gle).[Best viewed in zoom and color]

we use R
2 of {D

(0)
1 ,D

(0)
2 , . . . ,D

(0)
p }, where D

(0)
i =

{(b(0)i , d
(0)
i )}, to denote the barcodes extracted from K.

Formally, the filtration sequence of K can be defined us-
ing a vertex filter function f : V ! R with the filtration
values ✏1 < ✏2 · · · ✏m, where ✏i 2 {f(v) : {v} 2 K}. With
function f , the filtration of K is:

K
f,0 = ;, K

f,i = {� 2 K : max
v2�

f(v)  ✏i} (10)

for 1  i  m. Then, for the filtration of K and ho-
mology dimension  ( = 0, 1 in this work), we ob-
tain the persistence barcode representation {D

(0)
i }

m
i=1 =

{(b(0)i , d
(0)
i )}mi=1, which we denote as B.

B.3. Vectorization Representation

The inconsistency of using persistence barcodes
{(b(0)i , d

(0)
i )}mi=1 in machine learning tasks has led to

the development of various vectorization approaches,
including statistical analysis [4, 46], kernel methods
[6, 11, 36, 38, 51], distance metrics [15, 45], and R

d

elements [1, 3, 5, 8, 33].
Recently, learning-based techniques have been proposed

to facilitate the integration of such graph descriptions into
modern deep learning architectures by introducing learn-
able weights for each barcode [29, 31]. Typical embed-
ding functions include the rational hat function [29], point
transformation-based techniques [7], and the DeepSets ap-
proach [71] adopted in [31].

For computational efficiency and ease of implementa-
tion, we employ the rational hat function, as described in
[29], for vectorization extraction due to its differentiability
and expressive power in representing graphs. Mathemati-
cally, the barcode coordinate function maps a barcode in B

to a real value by aggregating the points in the persistence



Table 9. Default Hyperparameters for BlockGCN on NTU RGB+D, NTU RGB+D 120, and Northwestern-UCLA.

Config. NTU RGB+D 60 and 120 NW-UCLA

random choose False True
random rotation True False
window size 64 52
weight decay 4e-4 3e-4
base lr 0.05 0.05
lr decay rate 0.1 0.1
lr decay epoch 110, 120 90 100
warm up epoch 5 5
batch size 64 16
num. epochs 140 120
optimizer Nesterov Accelerated Gradient Nesterov Accelerated Gradient

Table 10. Classification Accuracy (%) of BlockGCN using Different Modalities on NTU RGB+D, NTU RGB+D 120, and Northwestern-
UCLA Dataset.

Modality NTU-RGB+D NTU-RGB+D 120 NW-UCLAX-Sub X-View X-Sub X-Set

Joint 90.9 95.4 86.9 88.2 95.5
Bone 91.3 95.3 88.1 89.3 93.3
Motion 88.7 93.3 82.7 84.6 92.9
Bone Motion 88.3 92.6 83.0 84.8 88.8

Ensembled 93.1 97.0 90.3 91.5 96.9

diagram via a weighted sum:

 : B ! R B !

X

(b,d)2B

s(b, d) (11)

where s : R2
! R is a differentiable function that vanishes

on the diagonal of R2. The rational hat structure element
from [30] is defined as:

p 2 B p !
1

1 + kp� ck1
�

1

1 + ||r|� kp� ck1|
(12)

where c 2 R
2 and r 2 R are learnable parameters. This

function evaluates the ”centrality” of each point p 2 B with
respect to a learned center c and a learned shift/radius r.

In our implementation, we adopt the modified ver-
sion of the rational hat function provided in the Pytorch-
topological2 library, which is based on the original imple-
mentation by [29]. This vectorization approach allows us
to transform the persistence barcodes into fixed-length fea-
ture vectors that can be readily integrated with deep learn-
ing models, such as the BlockGCN architecture used in our
work. By learning the parameters of the rational hat func-
tion, we can adaptively capture the most informative topo-
logical features for the given graph classification task, en-
hancing the expressive power and discriminative capability
of our model.

2https://pypi.org/project/torch-topological/

C. Hyperparameter Settings

In this section, we provide the default hyperparameter set-
tings used for training our BlockGCN model on the NTU
RGB+D, NTU RGB+D 120, and Northwestern-UCLA
datasets. Throughout our experiments, we consistently train
a 10-layer BlockGCN with a maximum channel dimension
of 256. Table 9 presents the default hyperparameters for our
BlockGCN model on these datasets. These hyperparameter
settings have been carefully tuned to achieve optimal per-
formance on each dataset while maintaining a balance be-
tween model complexity and computational efficiency. By
using consistent hyperparameter settings across all experi-
ments, we ensure a fair comparison and evaluation of our
BlockGCN model’s performance on different datasets and
modalities.

D. Extended Experimental Results

In this section, we present additional experimental results to
provide a more comprehensive evaluation of our BlockGCN
model’s performance on various datasets and modalities.

D.1. Single Modality Performance

To gain further insights into the contribution of each modal-
ity to the overall performance of our BlockGCN model,
we conduct experiments training the model on each single
modality separately. Table 10 provides detailed results of
our BlockGCN’s performance on each modality for the dif-
ferent benchmark datasets. These results demonstrate the



effectiveness of our BlockGCN model in learning discrimi-
native features from individual modalities, such as skeleton,
RGB, depth, and infrared data. By examining the perfor-
mance on each modality, we can identify the strengths and
weaknesses of our model in capturing modality-specific in-
formation and guide future research efforts towards improv-
ing the fusion of multi-modal features. The single modal-
ity performance also serves as a baseline for evaluating the
benefit of multi-modal fusion in our BlockGCN model. By
comparing the results of single modality training with those
of multi-modal fusion, we can quantify the synergistic ef-
fect of combining complementary information from differ-
ent modalities to enhance the overall recognition accuracy.

D.2. Selection of Graph Distance for Static Topo-

logical Encoding

In the main text, we discuss the use of relative distances
between joint pairs on the graph to symbolize graph topol-
ogy. Theoretically, any proper graph distance can serve this
purpose. In our work, we investigate two common graph
distances for our Static Topological Encoding: the shortest
path distance and the distance in the level structure [19]. Ta-
ble 11 compares these two distances. Interestingly, both dis-
tances lead to an equivalent improvement, suggesting that
they fundamentally convey the same information, i.e., bone
connectivity. To streamline our approach, we default to em-
ploying the shortest path distance.

The choice of graph distance for Static Topological En-
coding is an important consideration, as it directly influ-
ences the model’s ability to capture the intrinsic topology
of the skeleton graph. By comparing the performance of
different graph distances, we can identify the most informa-
tive and computationally efficient representation for encod-
ing the graph topology. The equivalent improvement ob-
served when using either the shortest path distance or the
distance in the level structure indicates that both distances
effectively capture the essential connectivity information of
the skeleton graph. This finding simplifies the implementa-
tion of our Static Topological Encoding, as we can focus on
using the shortest path distance without compromising the
model’s performance.

Table 11. Comparing different graph distances for our Static Topo-
logical Encoding.

Graph Distance Acc(%)
shortest path distance level difference

- - 86.7
X - 86.9
- X 86.9

D.3. Choice of Simplicial Complex

In addition to the graph distance, we also explore the choice
of simplicial complex for persistent homology analysis used
in our dynamic topological encoding. Table 12 shows the
comparison between two commonly used simplicial com-
plexes: the Vietoris-Rips Complex and the Cubical Com-
plex. The results indicate that using the Cubical Complex
leads to a slight decrease of 0.2% in accuracy and signifi-
cantly longer run time compared to the Vietoris-Rips Com-
plex. Based on these findings, we adopt the Vietoris-Rips
Complex for our dynamic topological encoding.

The choice of simplicial complex is crucial for efficient
and effective persistent homology analysis. The Vietoris-
Rips Complex, which is based on pairwise distances be-
tween points, provides a good balance between topolog-
ical expressiveness and computational efficiency. On the
other hand, the Cubical Complex, which is based on a cu-
bical grid, may introduce additional computational over-
head without providing significant benefits in terms of ac-
curacy. By selecting the Vietoris-Rips Complex for our dy-
namic topological encoding, we ensure that our model can
efficiently capture the evolving topological features of the
skeleton graph over time, while maintaining high recogni-
tion accuracy.

Table 12. Comparing different simplicial complices.

Vietoris–Rips Complex Cubical Complex Acc(%)

X - 86.9
- X 86.7

D.4. Visualization of Learned Representations

To gain further insights into the learned representations of
our BlockGCN model, we provide additional visualizations
of the Static Topological Encodings and the learned adja-
cency matrices.

Figure 8 presents more examples of the learned Static
Topological Encodings, showcasing the model’s ability to
capture the intrinsic topology of the skeleton graph. These
visualizations illustrate how our model learns to encode the
relative distances between joint pairs, effectively represent-
ing the connectivity information of the skeleton.

Figure 9 visualizes the learned adjacency matrices of our
BlockGCN model. These matrices represent the learned
graph structure and the strength of connections between dif-
ferent joints. By examining these visualizations, we can
gain insights into how our model adapts the graph struc-
ture to better capture the dependencies and relationships
between joints for action recognition. The visualizations
of the learned Static Topological Encodings and adjacency
matrices provide a qualitative assessment of our BlockGCN
model’s learning process.



(a) Layer 1. (b) Layer 2. (c) Layer 3. (d) Layer 4. (e) Layer 5.

(f) Layer 6. (g) Layer 7. (h) Layer 8. (i) Layer 9. (j) Layer 10.

Figure 8. The learned Static Topological Encodings of our BlockGCN at each layer. It can be seen that the learned weights are diverse and
adapted to different levels of semantics.

(a) Layer 1. (b) Layer 2. (c) Layer 3. (d) Layer 4. (e) Layer 5.

(f) Layer 6. (g) Layer 7. (h) Layer 8. (i) Layer 9. (j) Layer 10.

Figure 9. The learned adjacency matrices of the GCN baseline model at each layer (Darker colors stand for larger weights). It can be
seen that the learned weights vary dramatically among different layers and deviate far from the bone connections, which are used for
initialization.
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