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In this supplementary material, we will further describe
the complementary nature of motion correlation distribu-
tions between RGB, event and LiDAR in Sec. 1. We further
demonstrate the effectiveness of various homogeneous fea-
ture fusions in Sec. 2.1. We conduct the ablation experiments
on the influence of training data and flow backbone on the
final results in Sec. 2.2. Then, we discuss the importance
of visual structure fusion in Sec. 3.1. We also verify the
robustness of the proposed method for various illumination
conditions in Sec. 3.3. Next, we compare the inference time
of the proposed method with other state-of-the-art meth-
ods in Sec. 3.2. We further provide the implementation of
training details in Sec. 3.4. Finally, we provide more visual-
ization results of comparison on the synthetic Event-KITTI
dataset in Sec. 4.1 and the real DSEC dataset in Sec. 4.2.

1. Complementary Motion Correlation

Our insight is that RGB provides x, y-axis spatial-dense
correlation, event provides x, y-axis temporal-dense corre-
lation, and LiDAR promises x, y, z-axis accurate but sparse
correlation for scene flow. In order to further illustrate the
complementarity of the correlation features between RGB,
event and LiDAR, we calculate the multimodal correlation
feature distributions along the x, y, and z dimensions within
a time period. Note that, we just temporally visualize the
statistical distribution of the x, y, z-axis correlation features
to facilitate understanding of the correlation complementar-
ity in the motion space. We have two conclusions. First,
RGB, event and LiDAR share similar correlation distribu-
tions in the x and y axes, which motivates us to align the
cross-modal x, y-axis correlation features for complementary
motion knowledge fusion. Second, LiDAR contains sparse
z-axis features, event has temporal-dense features and RGB
has spatial-dense features. Therefore, there is a complemen-
tary knowledge of the correlation between these modalities
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Training data Method EPE ACC

RGB,
LiDAR

CamLiFlow 0.113 55.69%
Ours w/ RAFT 0.107 59.85%
Ours w/ GMA 0.107 60.03%

Ours w/ FlowFormer 0.105 61.17%

RGB,
Event,
LiDAR

RPEFlow 0.103 60.81%
Ours w/ RAFT 0.086 69.52%
Ours w/ GMA 0.084 70.18%

Ours w/ FlowFormer 0.084 70.34%

Table 1. Ablation study on training data and flow backbones.

in x, y, z dimensions for spatiotemporal-dense 3D motion.

2. Ablation Study

2.1. Effectiveness of Homogeneous Feature Fusion

In Fig. 1, we visualize the scene flow results of different
homogeneous feature fusions (i.e., visual luminance fusion
(VLF), visual structure fusion (VSF) and motion correlation
fusion (MCF)). We input RGB, event and LiDAR, and output
the scene flows from different homogeneous feature fusions.
Without any homogeneous feature fusion, we only implicitly
fuse the features of various modalities, but the estimated
scene flow contains many outliers. With only VLF, most
outliers in the scene flow are removed. With VLF and VSF,
the structure integrity of the scene flow is improved and the
mismatched features are reduced. With VLF, VSF and MCF,
the scene flow is further improved. Therefore, the proposed
hierarchical visual-motion fusion framework can explicitly
fuse multimodal complementary knowledge to progressively
improve scene flow from visual to motion space.

2.2. Influence of Training Data and Backbone

In Table 1, we compare the influence of various flow
backbones (e.g., RAFT [1], GMA [2] and FlowFormer [3])
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(a) RGB / Event (b) LiDAR (c) w/ VLF (d) w/ VLF + VSF (e) w/ VLF + VSF + MCF

Figure 1. Visualization of scene flows from different homogeneous fusion stages. “VLF” denotes the Event-RGB visual luminance fusion.
“VSF” denotes the Event-LiDAR visual structure fusion. “MCF” denotes the RGB-Event-LiDAR motion correlation fusion.

and training data (e.g., RGB, event and LiDAR) on the final
scene flow results. As for the training data, the scene flow
performance from RGB-Event-LiDAR three modalities is
indeed significantly better than that of RGB-LiDAR two
modalities. As for the flow backbone, there is no obvious
difference in the improvement of scene flow results from var-
ious flow backbones. This shows that multimodal training
data is more conducive to the model than the flow backbone
to learn the intrinsic motion patterns of the scene. It is worth
that the proposed method that uses the homogeneous fea-
tures to fuse the knowledge can significantly improve scene
flow performance, indicating that the homogeneous space
can more explicitly model the multimodal complementary
knowledge to improve scene flow. Therefore, under the
whole framework, the event serves as a bridge to effectively
close the modality gap due to the intrinsic heterogeneous
nature between RGB and LiDAR, and the cross-modal ho-
mogeneous feature space can further make the scene flow
fusion process more physically interpretable.

3. Discussion

3.1. Importance of Structure Fusion

In order to study the effect of event in visual structure
fusion of LiDAR, we visualize the entire fusion process in
Fig. 2. We input the sparse point cloud (x, y, z) (seeing Fig.
2 (b)) and the corresponding event stream (t, x, y) (seeing
Fig. 2 (a)). We temporally project the event stream into the
2D (x, y) image coordinate along the t-axis dimension for
boundary map in Fig. 2 (c), and spatially project the point
cloud into the 2D (x, y) image coordinate along the z-axis
dimension for depth map in Fig. 2 (d). Then, we cluster the
2D boundary map and 2D depth map into a neighbor space
like an image superpixel in Fig. 2 (e), which transforms the
pixel-level structure into a region-level structure. Next, we
use KNN algorithm to associate the points of 2D depth map

Method Inference time (ms) EPE ACC
RAFT-3D [6] 400.8 0.167 13.16%
PV-RAFT [7] 2545.7 0.183 37.28%

CamLiFlow [8] 285.6 0.113 55.69%
RPEFlow [9] 328.8 0.103 60.81%
VisMoFlow 335.2 0.084 70.34%

Table 2. Discussion on inference time.

with those of 2D boundary map in the same neighbor for
obtaining a fused depth map in Fig. 2 (f). Finally, we use the
intrinsic parameters to inversely project the 2D depth map
into the 3D coordinate system for the final point cloud in
Fig. 2 (g). Compared with the input LiDAR point cloud in
Fig. 2 (b), the enhanced point cloud (seeing Fig. 2 (g)) has
a relatively complete structure and clearer contours, which
can reduce the subsequent motion feature matching error.

3.2. Inference Time

In Table 2, we choose inference time as the efficiency
metric for scene flow estimation, and RTX 3090 as the in-
ference platform. Note that, during the inference stage, the
spatial resolution of the RGB image and event is 640× 480,
and the sample number of the LiDAR point cloud is set as
17000. We can observe that the proposed method does not
have an advantage in inference time, but its performance
is much superior to other methods. This is because the
proposed framework performs multimodal fusion in both vi-
sual and motion spaces, sacrificing computational resources
but significantly improving the performance of the scene
flow. In the future, we will achieve network lightweighting
to make the entire multimodal fusion more efficient using
model quantization [4] and pruning [5] techniques.
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Figure 2. Detailed process of Event-LiDAR visual structure fusion. First, we project (a) Event stream and (b) LiDAR point cloud to the 2D
image coordinate system for obtaining the (c) 2D boundary map and (d) 2D depth map, respectively. Then, we cluster the boundary map and
the depth map to obtain the (e) structure neighbor, which represents a region-level structure. Next, we fuse the (e) structure neighbor and the
(d) depth map to obtain a (f) fused depth map via K-Nearest Neighbor. Finally, we inversely project the fused depth into a 3D point cloud.
(g) Enhanced point cloud has a relatively complete structure and clearer contours than (b) input point cloud.

Time slice number T EPE ACC
3 0.091 67.95%
5 0.086 69.72%
10 0.084 70.34%
15 0.085 69.80%
20 0.091 68.17%

Table 3. Discussion on the number of event time slices.

Selection number k EPE ACC
1 0.096 64.14%
3 0.086 68.17%
5 0.084 70.34%
8 0.087 69.58%
10 0.094 67.81%

Table 4. The choice of selection number of K-Nearest Neighbor.

3.3. Robustness for Various Illumination

In our framework, only RGB modality is sensitive to il-
lumination, while event modality with high dynamic range
is robust to illumination, and LiDAR is naturally insensitive
to ambient illumination due to its own imaging mechanism.
In order to verify the robustness for various illumination
conditions, we conduct experiments to compare the scene
flow performance of other state-of-the-art methods and our
method under daytime, dusk and low-light conditions in
Fig. 3. For daytime scenes, all scene flow methods perform
well. When applied to dusk scenes, the RGB-based unimodal
method RAFT-3D exhibits obvious artifacts, while the mul-
timodal methods are still able to maintain the performance.
For low-light scenes, the RGB-based unimodal method can-
not work, and the scene flow visualization of the multimodal
method RPEFlow [9] also shows obvious color deviation. In
contrast, the proposed multimodal method VisMoFlow can
still maintain the overall smoothness of 3D motion.

Sample number N EPE ACC
100 0.094 66.92%
500 0.088 69.85%

1000 0.084 70.34%
2000 0.084 70.36%

Table 5. Impact of correlation sample number on scene flow.

3.4. Implementation of Training Details

Setup in Time Slices of Events. Event time slice is to divide
the event stream over a period of time into multiple small
time periods. The larger the number of time slices, the denser
the temporal dimension motion information but the sparser
the spatial dimension visual information. In Table 3, we
study the impact of different numbers of time slices on the
final scene flow results. We choose [3, 5, 10, 15, 20] as the
candidate values of the number T of time slices. When T
is less than 10, the scene flow is gradually improved. When
T is equal to 15, the scene flow performance shows a slight
decline. The main reason is that, the larger the number of
time slices, the visual features of the single event stream
become fewer, resulting in invalid motion feature matching,
thus interfering with the scene flow. Therefore, choosing a
reasonable number of time slices is very important.
Selection Number of K-Nearest Neighbor. In Table 4,
we study the impact of the selection number of K-Nearest
Neighbor (KNN) on the final scene flow results. We choose
[1, 3, 5, 8, 10] as the candidate value of the selection number
k of K-Nearest Neighbor. We can observe that, the larger the
selection number k, the better the scene flow performance.
However, when k is larger than 5, the scene flow perfor-
mance decreases slightly. The main reason is that, KNN
filters the LiDAR coordinates that match an event coordinate
from near to far according to the distance. If k is too large,
some LiDAR coordinates that are too far away may be intro-
duced into the intel-modal depth fusion, affecting the visual



(a) RGB / Event (c) RAFT-3D (d) RPEFlow (e) VisMoFlow(b) LiDAR
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Figure 3. Visualization of scene flows under various illumination conditions.
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Figure 4. The balance weight sensitivity of model fusion losses.



(a) Multimodal data (b) RAFT-3D (c) PV-RAFT (d) CamLiFlow (e) RPEFlow (f) VisMoFlow

Figure 5. Comparison of scene flows on the synthetic Event-KITTI dataset.

structure fusion, and thus interfering with the scene flow.

Sample Number of Correlation. In Table 5, we study the
influence of the correlation sample number on the final scene
flow. We choose [100, 500, 1000, 2000] as the candidate
values of the sample number N . We observe that, as the
sample number N becomes larger, the scene flow metric
is also improved. However, when N is increased to 2000,
the scene flow performance is basically not improved, but
instead, the computational cost increases. Hence, to make a
trade-off between performance and cost, we set 1000 as the
correlation sample number N for the distribution alignment
of the multimodal correlation features.

Weight Sensitivity of Model Losses. To choose the optimal
balance weights for the total loss, we conduct the study on
the weight sensitivity of the typical fusion losses in Fig. 4,
such as, Lconsis, Lpse and Lkl

corr. The purpose of Lconsis

is to guarantee that the Event-RGB visual luminance fusion
not only enhances the visual quality but also improves the
capability of motion feature matching. Lpse is to ensure the
cross-attention transformer to learn the Event-LiDAR visual
structure fusion process. Lkl

corr aims to align the feature
distributions in the motion space between RGB, event and
LiDAR, which is beneficial to subsequent correlation fusion.
In Fig. 4 (a), the larger the balance weight of Lconsis, the
more rapidly the proposed framework converges. In Fig. 4
(b), the balance weight of Lpse is robust for the framework
training. In Fig. 4 (c), the K-L divergence loss Lkl

corr is
sensitive to the framework training. If the weight is too large,
the gradient will disappear. Therefore, we set the balance
weights of the fusion losses as [λ2, λ3, λ4] as [1.0, 1.0, 0.01].

4. Comparison

4.1. Comparison on Synthetic Dataset

The visualization of the scene flows predicted by the Vis-
MoFlow and other state-of-the-art methods on the synthetic
Event-KITTI dataset are presented in Fig. 5. It can be clearly
observed that RGB-based unimodal method RAFT-3D [6]
suffers slight artifacts. LiDAR-based unimodal method PV-
RAFT [7] performs well in the background regions of scene
flow, but there exist obvious outliers in the independent
moving object regions. RGB-LiDAR multimodal method
CamLiFlow [8] performs well in daytime scenes, but is dif-
ficult in nighttime scenes. In contrast, RGB-Event-LiDAR
multimodal methods (e.g., RPEFlow [9] and VisMoFlow)
perform relatively well in all-day conditions. However, the
scene flow visualization of RPEFlow has local color discon-
tinuities, while our method VisMoFlow is overall smooth.
This shows that the VisMoFlow can better fuse the cross-
modal complementary knowledge from visual to motion
space for the spatiotemporal continuity of 3D motion.

4.2. Comparison on Real Dataset

We also show the visualization results of the scene flows
predicted by the proposed method VisMoFlow and other
state-of-the-art methods on the real DSEC dataset in Fig. 6.
Note that, LiDAR used in the DSEC dataset is a 16-channel
LiDAR, and the acquired point cloud is relatively sparse. We
can observe that, the scene flows estimated by other compet-
ing methods cannot work well. This is because sparse point
clouds have incomplete structures, leading to mismatching
the motion features. On the contrary, the proposed method
introduces the event to enhance RGB for high dynamic imag-



(a) Multimodal data (b) PV-RAFT (c) CamLiFlow (d) RPEFlow (e) VisMoFlow

Figure 6. Comparison of scene flows on the real DSEC dataset.

ing and LiDAR for physical contour integrity in the visual
space, and fuse the multimodal spatiotemporal complemen-
tary correlation in the motion space for 3D motion continuity,
thus effectively improving scene flow in all-day scenes.
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