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Supplementary Material

In this supplementary material, we begin by describ-
ing more details of the evaluation metrics and experiment
setup in Section 6. In following Section 7, we present more
quantitative comparisons and visualization results on vari-
ous baselines and datasets, which further demonstrates the
effectiveness of our DREAM strategy. We conclude with a
discussion of the ethical implications in Section 8.

6. Metrics and setups
We provide a more comprehensive explanation of the met-
rics and the experiment settings employed in the main text
of the paper.

6.1. Metrics

In this section, we will detail the metrics applied to mea-
sure image distortion and perception quality. The distor-
tion metrics encompass Peak Signal-to-Noise Ratio (PSNR)
and Structural Similarity Index Measure (SSIM), as well
as Consistency the the perception measurement include the
Learned Perceptual Image Patch Similarity (LPIPS) and the
Fréchet Inception Distance (FID).

Peak Signal-to-Noise Ratio (PSNR). PSNR is an indi-
cator of image reconstruction quality. However, its value
in decibels (dB) presents certain constraints when assessing
super-resolution tasks [36]. Thus, it acts merely as a ref-
erential metric of image quality, comparing the maximum
possible signal to the level of background noise. Generally,
a higher PSNR suggests a lower degree of image distortion.

Structure Similarity Index Measure (SSIM). Building
on the image distortion modeling framework [58], the SSIM
applies the principles of structural similarity, mirroring the
functionality of the human visual system. It is adept at de-
tecting local structural alterations within an image. SSIM
measures image attributes such as luminance, contrast, and
structure by employing the mean for luminance assessment,
variance for contrast evaluation, and covariance to gauge
structural integrity.

Consistency. Consistency is measured by calculating
the MSE (×10−5) between the low-resolution inputs and
their corresponding downsampled super-resolution outputs.

Learned Perceptual Image Patch Similarity (LPIPS).
LPIPS evaluates the perceptual resemblance between gen-
erated images and their authentic counterparts by analyzing
deep feature representations.

Fréchet Inception Distance score (FID). FID [18] as-
sesses image quality by emulating human judgment of im-
age resemblance. This is achieved by utilizing a pre-trained
Inception-V3 network [51] to contrast the distribution pat-

terns of the generated images against the distributions of the
original, ground-truth images.

6.2. Setups

In this section, we will provide detailed descriptions of the
configurations for various baseline models as well as the
datasets utilized in our experiments.

SR3 model on face dataset. We train the SR3 [44]
model on an upscaled 8× FFHQ dataset for 1M iterations
and evaluate on 100 images from the CelebA [23] valida-
tion dataset. During training, the LR images are consis-
tently resized to 16 × 16 pixels, while the HR counterparts
are scaled to 128×128 pixels. For the SR image generation,
the LR images are first upscaled to 128 × 128 pixels using
bicubic interpolation and serve as the conditioning input. In
alignment with the DDPM [19], the Adam optimizer is uti-
lized with a fixed learning rate of 1e-4 through the training
phase. The training employs a batch size of 4, incorporates
a dropout rate of 0.2, and utilizes a linear beta scheduler
over 2000 steps with a starting value of 10−6 and a final
value of 10−2. A single 24GB NVIDIA RTX A5000 GPU
is used under this situation.

IDM model on face dataset. Adhering to the offical im-
plementation of the IDM [14], the model is trained on a 8×
FFHQ dataset for 1M iterations and evaluated on 100 im-
ages from the CelebA [23] validation dataset. Specifically,
throughout training, LR images are consistently resized to
16 × 16 pixels, while their HR counterparts are scaled to
128 × 128 pixels. These LR images are then processed
through a specialized LR conditioning network, which is
stacked with a series of convolutional layers, bilinear down-
sampling filtering, and leaky ReLU activation to extract a
hierarchy of multi-resolution features. These features are
then employed as the conditioning input for the denoising
network. The training employs the Adam optimizer with
a constant learning rate of 10−4, a batch size of 32, and
a dropout rate of 0.2. We implement a linear beta sched-
uler that advances over 2000 steps, starting from 10−6 and
escalating to 10−2. This setup is supported by two 24GB
NVIDIA RTX A5000.

SR3 model on general scene dataset. We train the
SR3 [44] model on upscaled 4× the training dataset com-
parising DIV2K [1] and Flicker2K [52] for 1M iterations.
Consistent with the SRDiff [29], each image is cropped into
patches of 160 × 160 as the HR ground truths. To pro-
duce the corresponding LR image patches of 40×40 pixels,
the HR image patches are downscaled using a bicubic ker-
nel. These LR image patches are then resized back to the
HR dimensions using bicubic interpolation and are used as



Table 5. Comparison of training speed and memory usage. The
values denote the ratio of DREAM/standard.

Face DIV2K
SR3 IDM SR3 ResShift

Training time 1.38 1.21 1.24 1.08
Training memory 1.06 1.11 1.09 1.13

the conditioning input for the super-resolution process. For
evaluation, the entire DIV2K validation set, consisting of
100 images, is utilized. The HR images are downsampled
using a bicubic kernel to generate LR images, which are
then cropped into 40×40 pixel patches with a 5-pixel over-
lap between adjacent patches. The SR3 model is applied to
these LR patches to yield the SR predictions which are sub-
sequently merged to form the final SR images. The model’s
training utilizes the Adam optimizer with a steady learning
rate of 10−4, a batch size of 32 patches, and a dropout rate
of 0.2. A linear beta scheduler is applied over 1000 steps,
initiating at 10−6 and culminating at 10−2. This configura-
tion is executed on two 24GB NVIDIA RTX A5000 GPUs.

ResShift on general scene datatset. Training the
ResShift model [62]uses a 4× dataset, combining the train-
ing sets from DIV2K [1] and Flickr2K [52] over 0.5M iter-
ations. Similar as data process in the previous SR3 setting,
each image is partitioned into patches of 256x256 pixels to
serve as HR ground truths. The LR image patches, resized
to 64x64 pixels, are derived by downscaling the HR patches
with a bicubic kernel. The VQGAN encoder, pre-trained on
the ImageNet dataset, processes these LR patches to distill
salient features, furnishing the necessary conditioning input
for the following latent denoiser network. For performance
evaluation, we use the entire DIV2K validation set, which
comprises 100 images. The HR images are downsampled
to LR with a bicubic kernel, and then segmented into 64x64
pixel patches, maintaining an 8-pixel overlap between ad-
jacent patches. The latent denoiser model is applied to the
LR patches to generate the corresponding SR latent codes.
These latent codes are subsequently processed by the VQ-
GAN decoder to reconstruct the SR patches, thereby pro-
ducing the final high-resolution super-resolution images.
The training regimen employs the Adam optimizer with a
consistent learning rate of 5 × 10−5 and a batch size of 32
patches. A linear beta scheduler is utilized over 50 steps,
selected evenly from a linearly spaced 2000-steps schedule
beginning at 10−6 and increasing to 10−2. The training is
conducted using two 24GB NVIDIA RTX A5000.

7. Additional experimental results

In this section, we begin by providing additional results
on the acceleration of training and sampling across various
baselines and datasets in Section 7.1. Lastly, in Section 7.2,
we offer a more comprehensive visual comparison on the
general scene dataset, using the SR3 [44] and ResShift [62]
models as baselines.
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Figure 10. Evolution of distortion metrics (left) and perceptual
metrics (right) using SR3 as a baseline on the face dataset.
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Figure 11. Evolution of distortion metrics (left) and perceptual
metrics (right) using IDM as a baseline on the face dataset.
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Figure 12. Evolution of distortion metrics (left) and perceptual
metrics (right) using ResShift as a baseline on the DIV2K dataset.

7.1. Training and sampling acceleration

Training efficiency. In Table 5, we detail the relative ratio
of training speed and memory usage between our DREAM
methodology and standard training approaches across a va-
riety of baselines and datasets. Our DREAM method, which
includes only a single additional forward computation, re-
sults in a marginal increase in training time (around 1.1 ∼
1.4×) and memory usage (approximately 1.05 ∼ 1.15×).
However, it offers a considerable advantage by significantly
accelerating training convergence. We further illustrate the
evolution of training through distortion metrics, namely
PSNR and SSIM, as well as perception metrics such as
LPIPS and FID. Utilizing SR3 and IDM as baselines for
the face dataset, the improvements are evident in Figure 10
and Figure 11. The ResShift model, used as a baseline for
the DIV2K dataset, demonstrates similar enhancements in
Figure 12. Notably, DREAM not only facilitates quicker
convergence but also outperforms the final outcomes of sev-
eral baselines after they fully converge. For example, with
the face dataset, the SR3 model using DREAM achieves a
PSNR of 24.49 and an FID of 61.02 in just 490k iterations,
whereas the standard diffusion baseline reaches a PSNR of
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Figure 13. Comparison of distortion metrics (left) and perception
metrics (right) with varying sampling steps, using IDM as a base-
line on the CelebA-HQ dataset.
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Figure 14. Comparison of distortion metrics (left) and perception
metrics (right) with varying sampling steps, using SR3 as a base-
line on the DIV2K dataset.

23.85 and an FID of 61.98 after 880k iterations. This un-
derlines a substantial training speedup by roughly 2× with
DREAM. Similarly, the IDM model with DREAM reaches
a PSNR of 23.54 and an FID of 55.81 in only 330k itera-
tions, compared to the baseline achieving a PSNR of 23.85
and an FID of 61.98 after 760k iterations, reinforcing the
significant efficiency of DREAM.

Sampling acceleration. Furthermore, DREAM signifi-
cantly enhances the efficiency of the sampling process, sur-
passing the performance of standard diffusion training with
a reduced number of sampling steps. Figure 13 showcases
the capabilities of DREAM using the IDM model on the
CelebA-HQ dataset. It compares super-resolution images
generated with different numbers of sampling steps, evalu-
ating them against both distortion and perception metrics.
While the conventional baseline necessitates up to 2000
sampling steps, DREAM attains superior distortion met-
rics (an SSIM of 0.73 compared to 0.71) and comparable
perceptual quality (an LPIPS of 0.179 versus 0.172) with
merely 100 steps, leading to an impressive 20× increase
in sampling efficiency. In a similar vein, Figure 14a illus-
trates the impact of DREAM using the SR3 model on the
DIV2K dataset. Here, the images produced with varying
sampling steps are again evaluated using both sets of met-
rics. Standard baselines typically require 1000 sampling
steps, but with DREAM, improved distortion metrics (an
SSIM of 0.79 versus 0.76) and similar perceptual quality
(an LPIPS of 0.127 versus 0.121) are achieved with just 100
steps, resulting in a substantial 10× sampling speedup.

(a) LR (b) Standard (c) DREAM (d) HR

Figure 15. Qualitative comparison for 8× SR using SR3 [44] on
the CelebA-HQ dataset [23]. Results highlight DREAM’s supe-
rior fidelity and enhanced identity preservation, leading to more
realistic details, such as eye and teeth.
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Figure 16. Qualitative comparison for 8× SR using IDM [14] on
the CelebA-HQ dataset [23]. Results highlight DREAM’s supe-
rior fidelity and enhanced identity preservation, leading to more
realistic detail generation in features like nose, and wrinkles.

7.2. Visualization

Face dataset. In Figure 15 and Figure 16, we provide
more representative examples from CelebA-HQ [23], em-
ploying SR3 and IDM as baselines, respectively.
General scene dataset. To further illustrate the effective-
ness of our DREAM strategy, we present selected examples
from the DIV2K [1]. These examples showcase complex
image elements such as intricate textures, repeated symbols,
and distinct objects. We conduct a comparative visualiza-
tion of our DREAM strategy against standard training prac-
tices, employing the SR3 model as a baseline in Figure 17,
Figure 18 and Figure 19. Similarly, we use the ResShift
model as a baseline in Figure 20, Figure 21 and Figure 22.

All these comparisons unequivocally demonstrate the su-
perior performance of our DREAM strategy.

8. Ethic impact
This research is applicable to the task of enhancing human
facial resolution, a frequent requirement in mobile photog-
raphy. It does not inherently contribute to negative social
consequences. However, given personal security concerns,
it is crucial to safeguard against its potential misconduction.
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Figure 17. Qualitative comparison for 4× SR on DIV2K [1] using SR3 [44] model as baseline. Left Image: standard training; Right
Image: DREAM training. The model trained under DREAM framework exhibits enhanced fine-grained details and rendering more realistic
results, as indicated by the magnified section of the synthesized SR images.
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Figure 18. Qualitative comparison for 4× SR on DIV2K [1] using SR3 [44] model as baseline. Left Image: standard training; Right
Image: DREAM training. The model trained under DREAM framework exhibits enhanced fine-grained details and rendering more realistic
results, as indicated by the magnified section of the synthesized SR images.
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Figure 19. Qualitative comparison for 4× SR on DIV2K [1] using SR3 [44] model as baseline. Left Image: standard training; Right
Image: DREAM training. The model trained under DREAM framework exhibits enhanced fine-grained details and rendering more realistic
results, as indicated by the magnified section of the synthesized SR images.
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Figure 20. Qualitative comparison for 4× SR on DIV2K [1] using ResShift [62] model as baseline. Left Image: standard training;
Right Image: DREAM training. The model trained under DREAM framework exhibits enhanced fine-grained details and rendering more
realistic results, as indicated by the magnified section of the synthesized SR images.
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Figure 21. Qualitative comparison for 4× SR on DIV2K [1] using ResShift [62] model as baseline. Left Image: standard training;
Right Image: DREAM training. The model trained under DREAM framework exhibits enhanced fine-grained details and rendering more
realistic results, as indicated by the magnified section of the synthesized SR images.
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Figure 22. Qualitative comparison for 4× SR on DIV2K [1] using ResShift [62] model as baseline. Left Image: standard training;
Right Image: DREAM training. The model trained under DREAM framework exhibits enhanced fine-grained details and rendering more
realistic results, as indicated by the magnified section of the synthesized SR images.


