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1. Additional Verification Experiments
As supplementary experiments to the catastrophic forget-
ting verification experiments introduced in the main text,
we further investigate the performance of vanilla adversar-
ial training against attack sequences in a diverse range of
settings, as outlined below:

• PGD [6] & CW [1]. CW attack is a conditional-
optimization based attack with different principles com-
pared to PGD attack. We evaluate it, along with PGD, to
verify forgetting in attack sequence with different attack
principles. However, training CW attack online presents
a significant challenge due to its substantial computational
cost. Additionally, there is a lack of specifically designed
adaptation methods for CW within the defense commu-
nity [5]. Therefore, the defense model is adapted to CW
attack after the attack data (including the training set and
testing set) is pre-crafted.

• PGD [6] & AA [2]. AutoAttack (AA) is one of the
most advanced attacks for evaluating the adversarial robust-
ness of DNN model, incorporating both black box and white
box attack strategies. We evaluate AA in a black box man-
ner, along with PGD in a white box manner, to verify ro-
bustness forgetting against the attack sequence consists
of white box and black box attacks. A substitute model
(ResNet18 [3] in our experiments) is pre-trained to gener-
ate AA samples, following the commonly used black box
attack approach [10].

• PGD [6] & DDN [8]. The decoupled direction and
norm attack (DDN) concepts from CW and PGD attacks,
and is essentially a white box attack. As a supplement ver-
ification to the black box AA, we also evaluated DDN in
a black box manner along with PGD in a white box man-
ner. A substitute model (ResNet18 [3]) is pre-trained to
craft DDN samples.

• PGD [6] with different attack budget. Finally, it is
a common but inaccurate perception that models defended
with a larger budget attack should be robust to smaller bud-
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get attack. However, different budgets may introduce dif-
ferent inner maximization biases, leading to distinct ridges.
Simply, models defended against a specific attack budget
may not always exhibit optimal robustness against attacks
with different budgets. We evaluated PGD with the attack
budgets of 8/255 and 80/255 to investigate this challenge.

The verification results are presented in Figure 1, con-
firming that the defense model experiences catastrophic for-
getting in all settings. However, the adaptive processes to
CW, DDN and AA attacks are relatively straightforward, in-
volving naive off-line adversarial training. In reality, there
is a lack of specialized and rigorous adaptation methods in
the community to these attacks. Consequently, for the eval-
uation of the continual defense model in the main text, we
primarily focus on the FGSM attack and PGD attack with
mature defense strategies (AT for FGSM and Madry’s AT
for PGD).

As a supplementary exploration in addition to the exper-
imental section in the main text, we further investigated the
performance of our AIR under these attack sequences in
a naive offline adversarial training manner. The bar chart
marked by subscript ’2 (AIR)’ illustrates the results. The
AA, CW, and DDN attacks are considered relatively sim-
ple attacks in the experiments, as they are frozen after being
crafted (either pre-crafted or obtained with a fixed substitute
model). The model exhibits less forgetting for the ’easy to
hard’ attack sequences (e.g, CW to PGD) compared to the
more severe forgetting observed for the ’hard to easy’ at-
tack sequences (e.g., PGD to CW). The proposed AIR con-
sistently mitigates the model’s forgetting of previous tasks
(indicated by the yellow bar chart with diagonal stripes) and
maintains improvements for the new tasks (shown in the
blue bar chart with horizontal stripes), achieving a better
’stability-plasticity’ trade-off.

2. Discussion on the Feature Extraction

Feature extraction is a common transfer-learning method
where only the last fully connected layers are fine-tuned
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Figure 1. Supplementary catastrophic forgetting verification in a one-shot defense model within a continual defense scenario. The hori-
zontal axis is a timestamp, where time ’1’ represents the model’s adaptation to TASK 1, and time ’2’ represents the sequential adaptation
to all attack tasks in the given sequence. The ’2 (AIR)’ represents the performance of our AIR after adapting to the entire sequence. TASK
1 and TASK 2 depend on the particular sequence. For example, in the first sub-figure, TASK 1 and TASK 2 refer to PGD attack and AA
attack, respectively.

for adapting to new tasks, while other modules, such as
convolutional layers, remain fixed as the feature extractor.
This technique has been extensively evaluated in transfer
learning![7] and continual learning [4]. However, in contin-
ual adversarial defense, feature extraction shows intriguing
insights.

Poor performance against ’easy to hard’ attack se-
quences. As shown in Tables 1-4 in the main text, the
limited plasticity of the feature extraction model hinders
its ability to learn more challenge attacks, such as ’none
to PGD’ in CIFAR100.

Excellent performance against ’hard to easy’ attack
sequences. However, feature extraction model performs
well against ’hard to easy’ attack sequences, even though
only the FC layers are fine-tuned. The above results sug-
gests that:

(a) Adversarial attacks tend to perturb the entire model,
including the shallow representation, rather than targeting
the classifier alone. This means that, for models without de-
fense or those only defended with weak attacks, fine-tuning
the classier alone is insufficient to achieve robustness, as
the features encoded by the weak robust extractor are unre-
liable.

(b) Complex robust representations exhibit a degree of
backward compatible with weak robust representations.
However, additional fine-tuning is necessary for optimal
performance. This observation is further supported by the
results of the ’strong PGD & weak PGD’ verification exper-
iments, where the forgetting in ’weak PGD to strong PGD’
sequence is not as severe as in the ’strong PGD to weak
PGD’ sequence. However, to achieve enhanced robustness
against the weak attacks, an additional adaptation process is

PGD & FGSM & Patch & AA & None

Tasks from PGD to None from None to PGD
Task1 Task2 Task3 Task4 Task5 Task1 Task2 Task3T Task4 Task5

Vanilla 24.62 43.16 34.23 67.97 75.20 70.60 71.68 40.04 36.33 40.04
AIR(ours) 36.82 44.49 68.28 71.87 72.90 70.35 68.13 48.32 46.21 41.22
Joint Train 36.45 39.97 61.24 61.65 74.27 74.27 61.65 61.24 39.97 36.45

Table 1. Experimental results on five different attacks on CI-
FAR10.

indispensable.
Based on above analysis, a natural insight is that, in

the popular ’pre-training & fine-tuning’ training paradigm,
downstream tasks may benefit from a strong robust pre-
training. Conversely, a pre-trained model lacking robust-
ness may face challenges in achieving robustness for down-
stream tasks. Furthermore, compared with standard con-
tinual learning, the sequence of attacks becomes a more
important factor in continual defense. Models pre-trained
with easy attacks may offer more generalizable representa-
tion for subsequent, more challenging attacks. Conversely,
models adversarially trained with more challenging attacks
may experience increased catastrophic forgetting but may
obtain the shortcut to continuable robustness. Numerous
intriguing properties in continuous defense still need to be
further explored.

3. Expansion evaluation of AIR
Evaluation with more attacks. Our experiments followed
the common evaluation setup in continual learning, typi-
cally involving sequences of 2-3 tasks. Additionally, our
evaluation surpasses CAD[9] by considering sequence or-
der and attack strengths, which CAD neglects. Still, we
conduct additional experiments with a sequence length of 5



FGSM & Patch PGDL2 & PGDL∞ PGD & AA

Tasks FGSM to Patch Patch to FGSM L2 to L∞ L∞ to L2 PGD to AA AA to PGD
Task1 Task2 Task1 Task2 Task1 Task2 Task1 Task2 Task1 Task2 Task1 Task2

Vanilla 21.31 59.55 17.19 58.31 64.41 43.09 21.88 77.65 16.84 74.51 64.10 41.31
AIR(ours) 40.75 73.62 30.46 54.48 79.44 48.04 40.11 78.34 44.97 75.20 73.06 47.46
Joint Train 43.83 57.76 57.76 43.83 78.39 44.84 44.84 78.39 40.89 74.50 74.50 40.89

Table 2. Experimental results of various attack strategies on CIFAR10.

Orders PGD to FGSM PGD to None
Attacks AA Adv.Patch SSAH AA Adv.Patch SSAH

vanilla 0.17 11.48 13.58 0.08 23.58 10.30
AIR(ours) 29.33 44.90 32.76 29.28 45.88 33.52

ATPGD (upper bound) 34.71 44.27 36.31 34.71 44.27 36.31

*
Table 3. Evaluation on additional attacks.

Tasks FGSM to PGD PGD to FGSM
Task1 Task2 Task1 Task2

vanilla 14.04 26.67 3.18 30.04
AIR(ours) 22.62 28.01 21.07 29.41
Joint train 30.76 28.34 28.34 30.76

Table 4. Exp. on TinyImageNet.

CIFAR10-C None & Snow GN & Contrast

Tasks None to Snow Snow to None GN to Contrast Contrast to GN
Task1 Task2 Task1 Task2 Task1 Task2 Task1 Task2

vanilla 70.57 80.70 66.55 83.43 75.95 87.32 53.48 87.96
AIR(ours) 78.41 84.21 77.48 84.25 79.64 83.31 76.58 85.94
Joint train 84.34 82.10 82.10 84.34 86.36 84.39 84.39 86.36

Table 5. Experimental results on CIFAR-10-C dataset.

(with different attack strategies) on CIFAR10. The results
in Table 1 show that our AIR also performs well in longer
sequences with increased internal diversity.

Evaluation on AutoAttack (AA) Our initial focus was
on establishing an explicit adaptation process for each at-
tack, aligning with the common setup in continual learning,
thereby excluding the evaluation of AA. Here, we conduct
experiments to evaluate explicit adaptation (offline adver-
sarial training) to attacks like AA and present the results
in Table 2. We also provide the results in Table 3 as a
demonstration of AIR’s resistance to forgetting when fac-
ing attacks including AA, during adaptation to other attack
sequence (e.g., PGD to None/FGSM). Our AIR exhibits sta-
bility under both settings.

Evaluation on ImageNet. We use CIFAR since it is the
most common dataset for adversarial defense. we conduct
an evaluation on Tiny-ImageNet as a lightweight proxy ex-
periment and present the results in Table 4. Our AIR also
demonstrates continual robustness on the larger datasets.

Evaluation on common corruptions. We appreciate
your suggestion. Considering the diversity and combina-

tion of image corruptions, we conduct experiments to eval-
uate AIR’s resistance to forgetting under three most chal-
lenging types of image corruptions, including Snow, Gaus-
sian noise (GN), and Contrast, and present the results in
Table 5. AIR also demonstrates stability against continual
corruption tasks.
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