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This supplementary material mainly contains the imple-
mentation details of our method, the comparisons, and the
user study we conducted. More experimental results gener-
ated by our method and the verification in feature selection
of DINO semantic guidance are also included.

A. Implementation Details
A.1. Network architecture

We use the StyleGANv2 architecture1 [7], pre-trained on
FFHQ [6] as our source model for human face stylization.
We also use StyleGAN2-ada2 [5], pre-trained on AFHQ [2]
for testing on animal face stylization (e.g., cat and dog); See
Sec. E.

For the STN blocks appended in the generator, we con-
struct them following [4], where each contains three com-
ponents: a localization net, a grid generator, and a sampler.
The TPS-STN and Basic-STN share the same localization
net architecture, two convolution layers with MaxPool oper-
ation, followed by two fully connected layers (FC). We use
ReLU activation for both the CNN and linear layers. We set
5×5 kernel size for convolution layers and output channels
to 128. We also set the output size of the two FC layers to
64 and 2003, respectively.

A.2. Baseline methods

We compare with four state-of-the-art one-shot face styl-
ization methods, which are MTG4 [13], JoJoGAN5 [3],
DiFa6 [11] and OneshotCLIP7 [8]. We train the models by
their released source codes with default settings.

A.3. Variants of MTG and JoJoGAN

For fairness, we convert MTG [13] and JoJoGAN [3],
named MTG-pair and JoJoGAN-pair, to accept a paired ref-
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3Here, 200 is because we set the grid size of STNs to 10× 10.
4https://github.com/ZPdesu/MindTheGap
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erence for training. For convenience, we mark the original
generator and the fine-tuned generator as Gs and Gt, re-
spectively. The real-style paired reference is represented by
(Isref , Itref ).

MTG-pair. See [13] for details of MTG. Different from
the original version, we obtain the reference cross-domain
vector using the given paired reference directly, which does
not require to find a latent code wt

ref for an image similar
to Itref that is plausibly within source domain during the
construction of vref . Thus, the vref is modified to

vref = EI(I
t
ref )− EI(I

s
ref ), (1)

where EI denotes the CLIP image-embedding model.
Since it is important to match the style reference Itref

with the generated image Gt(ws
ref ), we additionally obtain

ws
ref by II2S [14]. Then, we take Gt(ws

ref ) into the cal-
culation of Lref clip and Lref rec in MTG, and use the full
losses of MTG for training. Besides, we use the same im-
plementation as MTG for inference.

JoJoGAN-pair. See [3] for details of JoJoGAN. Similar
to MTG-pair, we are not required to find a latent code wt

ref

of Itref . Instead, we obtain the reference latent code ws
ref

by inverting Isref using e4e [10] and use the code to create
the training set by random style mixing. Following [3], we
use the same perceptual loss calculated by features from the
discriminator for training.

A.4. Training data

Fig. 1 shows the paired references used in our experi-
ments. The paired references are obtained from the existing
models, except for the last three columns collected from the
internet.

A.5. Training time

We did all the experiments using a single NVIDIA RTX
3090 and recorded the training time. Table 1 shows the av-
erage training time over five times for our method and the
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Figure 1. Paired training data.

competitors. Note that for MTG, JoJoGAN and our method,
the time spent on reference inversion is not included. As a
result, our method still maintains a short fine-tuning time.

Table 1. Average training time over 5 times of each.

Method MTG [13] JoJoGAN [3] DiFa [11]
Avg. Time 8m50s 31s 2m2s

Method OneshotCLIP [8] Ours
Avg. Time 49m48s 12m16s

B. DINO Semantic Guidance
B.1. Feature selection

As the representations vary across different facets of ViT
in different layers according to [1], we conducted a simple
over-fitting test for selecting DINO features.

With the DINO semantic guidance, our objective is to
deform real faces based on a style/deformation reference
while keeping the global semantics unchanged. In the over-
fitting test, we use a selected latent code w∗ as a train-
ing sample and optimize the StyleGAN generator G with
a directional deformation loss and a structure preservation
loss. We employ the directional deformation loss Ldirect as
outlined in the main paper. Additionally, we compute the
structure preservation loss Lstruct using DINO features of
G(w∗) and Iw∗ , represented as follows:

Lstruct = ||El
D(G(w∗))− El

D(Iw∗)||22, (2)

where El
D(·) denotes the l-th layer of DINO features, Iw∗ =

Gs(w∗) is the image generated by the original generator Gs.
Fig. 2 shows the training losses recorded in our over-

fitting test. As illustrated in Fig. 2(a) and (b), when utilizing
the Tokens of DINO, we achieve a closer match to direc-
tional guidance while simultaneously preserving the struc-
ture, outperforming the Keys. Consequently, we opt to uti-
lize Tokens as the feature representation in our framework.
Moreover, in our pursuit of identifying more suitable feature
layers for representation, we experiment with various layer
combinations. Specifically, we examine the features of the
6th and 12th layer for the computation of the two losses.
As depicted in Figure 2(c) and (d), using Tokens from the
6th layer for Lstruct and Tokens from either the 6th layer or
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Figure 2. Visualization of training loss curves of different DINO
features. (a) and (c) are the curves of Ldirect while (b) and (d)
are the curves of Lstruct. We explore the representations of To-
kens and Keys in (a) and (b), and explore the representations of
different layers of Tokens in (c) and (d). The legend tags denote
the combination of different layers of Tokens/Keys. The feature
layer(s) used in Ldirect and Lstruct are presented in left and right
of the tuple, respectively.

a combination of the 6th and 12th layers for Ldirect yields
a superior representation. Given that the combination of
Tokens (6,12; 6) slightly outperforms Tokens (12; 6)
in matching the directional reference, we incorporate a mix-
ture of M- and H-level features of DINO for the computing
the directional deformation guidance. Additionally, we ex-
clusively utilize M-level features to ensure relative struc-
tural consistency in our framework.

B.2. Comparison with weakly-supervised ViTs

In addition to the PCA-based hierarchical feature visu-
alization shown in our submitted paper, we further present
an experimental result to prove the DINO features are bet-
ter than those of existing weakly-supervised ViTs (i.e.,
CLIP [9] and FaRL [12]) for semantic representation in the



Figure 3. Comparison with weakly-supervised ViTs as the feature representation.

task of face stylization. We use the same configuration of
our framework and simply replace the DINO features with
those from CLIP and FaRL. Fig. 3 shows the comparison
using different ViTs as feature representations. Apparently,
DINO features surpass the CLIP and FaRL both in geome-
try deformation and color style.

C. Effect of Color Alignment
Fig. 11 shows the generated training samples after color

alignment. Our goal is to align the color of generated train-
ing samples to the reference, further ensuring the correct-
ness of DINO semantic guidance. Thanks to the style mix-
ing of StyleGAN generator, we can implement color align-
ment by swapping the latent codes in W+ space. Note
that the fine-level codes in W+ space of StyleGAN mainly
control the appearance of images, specifically for the 9th
code. Therefore, we decided to swap the 9-18th codes of
w with the corresponding codes of ws

ref and wt
ref . More-

over, We only use the color-aligned images to compute our
two DINO-based losses, while we use the original images
to compute the adversarial style loss.

D. Details of User Study
Fig. 8 shows the interface of our user study system. In

our user study, we select five artistic styles to investigate
human evaluation. Fig. 9 illustrates the detailed user prefer-
ence for each style.

E. Deformable Face Stylization Results
E.1. Qualitative comparison with the SOTA

In addition to the examples shown in the main paper,
we show more visual comparison results in Fig. 10 with
MTG [13], JoJoGAN [3], DiFa [11], OneshotCLIP [8] and
the variants of MTG and JoJoGAN. Besides the cases with
strong exaggeration, we also test our approach on styles
with less exaggeration, where in these cases the style refer-
ences show more faithful identity correlation with the paired
natural facial images. As shown in Fig. 4, our approach
faithfully preserves the input face ID, while still vividly cap-
turing both the appearance style and local deformations. As

Table 2. Comparison with SOTA on Inception Score (IS) (↑),
where the three styles referred to below are those involved in Fig-
ures 7 and 8 of our main paper.

MTG JoJoGAN MTG-pair JoJoGAN-pair Ours
Style1 1.43 1.39 1.32 1.38 1.55
Style2 1.20 1.29 1.32 1.33 1.36
Style3 1.51 1.52 1.22 1.36 1.62

a comparison, JoJoGAN is less appealing in mimicking the
style and appearance change.

Furthermore, we show the compatibility of our approach
to unpaired cases. As shown in Fig. 5, due to the unfaith-
ful mapping of cross-domain GAN inversion, the signature
exaggeration exhibited in the style example will not be re-
tained in the results of such unpaired cases.

E.2. Quantitative comparison with the SOTA

In the main paper, we have evaluated the generated re-
sults from three aspects: perception, deformation, and face
identity. Recognizing the significance of addressing the
mode collapse issue in few-shot learning, we further cal-
culate the Inception Score (IS) to verify the generation di-
versity of our approach. As listed in Tab. 2, our method
achieves better generation diversity over SOTA methods.

E.3. Arbitrary artistic portrait generation

Fig. 12-19 show artistic portraits with different styles
generated by our fine-tuned models.

E.4. Deformable face stylization on animal domains

We also test our method for animal face stylization. We
use the StyleGAN2-ada [5] pre-trained on AFHQ [2] (cat
and dog) as the base generator. We form the deformation-
aware generator by inserting the STNs into the base genera-
tor. Note that we use the same network settings, apart from
the weight of relative structural consistency loss, where we
set it to 1e4. Fig. 7 shows the randomly generated results
on cat and dog faces. More random generated results are
shown in Fig. 20 and Fig. 21.



Figure 4. Results on styles with less exaggeration and more faithful identity correlations between the paired references. Our method still
surpasses JoJoGAN in capturing both the appearance style and local deformations of the style examples; e.g., the bright spot on the faces
in row 2, and the curly hairstyle in row 4.
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Figure 5. Results using unpaired data (top). Compared with using paired data (bottom), the signature smile of the style image is lost.

E.5. Controllable face deformation

Fig. 6 shows the additional controllable face deformation
in different styles. Taking the trained STNs as plug-ins, we
provide the controllability for face deformation, allowing us
to flexibly change the deformation degree of faces.
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Figure 6. Controllable deformation.
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Figure 8. User interface.
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Figure 9. User preference.



Figure 10. Visual comparison on different face style transfer.



Figure 11. Color alignment by style mixing.

Figure 12. Random generated results of face stylization using paired reference shown at left bottom.



Figure 13. Random generated results of face stylization using paired reference shown at left bottom.

Figure 14. Random generated results of face stylization using paired reference shown at left bottom.

Figure 15. Random generated results of face stylization using paired reference shown at left bottom.



Figure 16. Random generated results of face stylization using paired reference shown at left bottom.

Figure 17. Random generated results of face stylization using paired reference shown at left bottom.

Figure 18. Random generated results of face stylization using paired reference shown at left bottom.



Figure 19. Random generated results of face stylization using paired reference shown at left bottom.

Figure 20. Deformable face stylization on cat faces. Paired reference is shown at left bottom.

Figure 21. Deformable face stylization on dog faces. Paired reference is shown at left bottom.


