
DreamPropeller: Supercharge Text-to-3D Generation with Parallel Sampling

Supplementary Material

A. Theoretical Results
We show that the iteration rule in Eq. (9) satisfies the fixed-
point property, and is guaranteed to converge to the true so-
lution, i.e., the solution obtained by sequential computation
which we denote as θ⋆0 , . . . , θ

⋆
T . Our result follows from a

simple observation via induction. First, assume that after k
fixed-point iterations, θkτ = θ⋆τ for all τ ≤ k. We always
initialize θk0 to be θ⋆0 , so our inductive hypothesis trivially
holds for k = 0. Next we examine the iteration rule for it-
eration k + 1 and simplify terms using the pseudo-inverse
property that h†(s(θ⋆τ ), θ

⋆
τ ) = g(θ⋆τ ) = θ⋆τ+1.

θk+1
τ+1 = h† (s(θkτ ), . . . h† (s(θk1 ), h†(s(θk0 ), θ

k
0 )
))

θk+1
τ+1 = h† (s(θ⋆τ ), . . . h† (s(θ⋆1), h†(s(θ⋆0), θ

⋆
0)
))

θk+1
τ+1 = h† (s(θ⋆τ ), . . . h† (s(θ⋆1), θ

⋆
1)
)

θk+1
τ+1 = h† (s(θ⋆τ ), . . . θ

⋆
2)

θk+1
τ+1 = h† (s(θ⋆τ ), θ

⋆
τ )

θk+1
τ+1 = θ⋆τ+1

The above derivation shows that the inductive hypothe-
sis extends to all τ ≤ k + 1. Therefore, after at most T
iterations the fixed-point iteration will converge to the true
solution. In practice, however, the fixed-point iteration may
converge with much fewer number of iterations.

B. Algorithm
A detailed algorithm is presented in Algorithm 2. We
emphasize that since the computational units s(·) do not
have nested dependencies, they can be computed in paral-
lel. On the other hand, the h†(·) must be unrolled sequen-
tially. Therefore, for speedup with parallel computation,
s(·) should be chosen to contain most of the computational
cost.

C. Additional Details on Practical Decisions
Sliding window. The sliding window scheme can be better
understood with a simple example. For a window of size
3 containing {θkτ , θkτ+1, θ

k
τ+2} with corresponding drifts

{s(θkτ ), s(θkτ+1), s(θ
k
τ+2)}, one slides the window forward

by one if
∥∥θk+1

τ+1 − θkτ+1

∥∥2 ≥ e and slides the window by

two if
∥∥θk+1

τ+1 − θkτ+1

∥∥2 < e and
∥∥θk+1

τ+2 − θkτ+2

∥∥2 ≥ e.
We employ L2 norm on 3D parameter space in practice.

In the case of generalized iteration, θk+1
τ and θkτ may lie

in different dimensions. We then calculate the L2 error be-
tween the two by

∥∥θk+1
τ+1 − unproj(θkτ+1)

∥∥2. We denote this

Algorithm 2 DreamPropeller

Input: 3D model with initial parameter θ, parameter di-
mension D, total time T , initial threshold e, error ag-
gregation function M , Adam optimizer, EMA update γ,
number of GPUs n.
Output: Score distillation output
τ, k, p← 0, 0, n− 1
θ0i ← θ ∀i ∈ [0, p− 1]
Initialize diffusion guidance (and optionally, LoRA for
VSD) on p GPUs.
while τ < T do

Dispatch {θkτ+j}
p−1
j=0 to different GPUs and gather

{s(θkτ+j)}
p−1
j=0 with seed τ (Optionally, update LoRA

separately on each GPU). // Gather∇θLSDS or∇θLVSD
θk+1
τ+j+1 ← h†(s(θkτ+j), . . . h

†(s(θkτ ), θ
k
τ ) . . . ), ∀j ∈

[0, p− 1]
error← { 1

Dd(θk+1
τ+j , θ

k
τ+j)

2}pj=1

skip ← min({j : 1
Dd(θk+1

τ+j , θ
k
τ+j)

2 > e, ∀j ∈
[1, p]} ∪ {p})

θk+1
τ+j ← θk+1

τ+p ∀j ∈ [p, skip + p] // New window
τ ← τ + skip, k ← k + 1
e← γe+ (1− γ) ∗M(error) // Adaptive threshold
p← min(p, T − τ)

end while
return θkT

(squared) distance as d(θk+1
τ+1, θ

k
τ+1)

2 hereon. For the case
of Adam optimizer, we choose to only measure the distance
between θ parameters and ignore momentum parameters for
convergence checking.
Eliminating stochasticity. We simply set the seed for time
step τ to be τ . For increased variability, we can sample a
random seed s before running the algorithm and set the seed
for time step τ to be τ + s.
Parallelizing Variational Score Distillation. We reuse all
settings from Wang et al. [46] for each independent copies.

D. Experiments

Our code is based on threestudio [18]2 and for all the
baselines we reuse their settings. Note that for TextMesh,
threestudio only implements the coarse-stage genera-
tion. Therefore, as a wrapper around the package, we only
experiment with coarse-stage TextMesh to demonstrate our

2https : / / github . com / threestudio - project /
threestudio

https://github.com/threestudio-project/threestudio
https://github.com/threestudio-project/threestudio


DreamFusion[29] Magic3D [15] TextMesh [44] DreamGaussian [43] ProlificDreamer [46]

Guidance Model DeepFloyd DeepFloyd+SD-2.1 DeepFloyd SD-2.1 SD-2.1
Window Size p 7 7 7 7 7

Initial Threshold e (×10−6) 5 5 5 500 50
Adaptivity γ 0.9 0.9 0.9 0.9 0.9

Error Aggregation Function M median median median median mean
Batch Size 16 16 16 16 [8,2],8,1

Table 3. Default parameters used for Text-to-3D generation.

technique’s effectiveness on this representation. For Pro-
lificDreamer, for quantitative metrics, due to time limita-
tions, we only report the runtime and quality metrics of the
first stage (using NeRF). We observe similar speedup for its
second/third stage during refinement. The qualitative com-
parisons, however, include the second and third stage re-
finement. The second stage also has batch size of 8 but for
the third stage, we use batch size of 1 (since anything larger
is prohibitively slow for baselines). Similarly, we build a
lightweight wrapper for 3D Gaussian Splatting using the
DreamGaussian implementation3.

We summarize the default parameter settings relevant for
our algorithm in Table 3 for Text-to-3D generation. All
other parameters are held fixed from threestudio and
DreamGaussian implementations. Note that for Dream-
Fusion and Magic3D, we use DeepFloyd for coarse-stage
generation and we use SD-2.1 for refinement.

For Image-to-3D generation, we also use the Zero-1-to-3
implementation from threestudio, which uses NeRF as
the 3D representation, and DreamGaussian, which uses
3D Gaussian Splatting, respectively. For NeRF, we reuse
settings from threestudio. For SDS, we progressively
increase the rendering size in the order of {64, 128, 256}
and use batch size {16, 16, 10} at step {0, 600, 900}. The
single image size is also changed in the order of {128, 256,
512}. For 3D Gaussian Splatting, we use batch size 16 and
reuse other settings from DreamGaussian implementa-
tion. We summarize relevant parameter settings in Table 4.

NeRF [23] 3DGS [11]

Guidance Model Zero-1-to-3 Zero-1-to-3
Window Size p 7 7

Initial Threshold e (×10−6) 30 500
Adaptivity γ 0.9 0.9

Error Aggregation Function M median median
Batch Size 16,16,10 16

Table 4. Default parameters used for Image-to-3D generation us-
ing Zero-1-to-3 [17].

Evaluation settings. For Text-to-3D, we render a learned
3D shape from 12-degree elevation angle and 120 evenly-

3https://github.com/dreamgaussian/dreamgaussian

spaced azimuth angles all around. Each image is paired
with the shape’s input prompt. We use CLIP-B/32 for both
R-Precision and FID calculation. The reference statistics
for FID is the ImageNet 2012 validation set.

https://github.com/dreamgaussian/dreamgaussian


E. Accelerating Image-to-3D Generation
Many works have also explored score distillation for Image-
to-3D generation using 2D-diffusion finetuned on view-
dependent data [16, 17, 30]. Among the most popular ap-
proaches is Zero-1-to-3 [17], which finetunes a large-scale
diffusion model for novel-view synthesis given a single im-
age and novel-view embeddings. It also serves as a power-
ful 3D-aware prior for score distillation, which luckily our
framework can be directly applied to. In this section, we
investigate our framework’s application to the Image-to-3D
generation task.

For evaluation, we choose NeRF [23] and 3D Gaus-
sian Splatting [11] as the two representative examples for
3D representations with constant and changing dimensions
during optimization. Each representation is equipped with
Zero-1-to-3 and a source image for generating a novel 3D
object, and we show that our framework can achieve sub-
stantial speedup when applied to Zero-1-to-3 while retain-
ing generation quality. For both representations, we use
batch size 16 unless otherwise noted, and we run SDS
for 1200 steps and 500 steps respectively (details in Ap-
pendix D). We show 3 examples for each representation
in Figure 6, where we compare novel views of the 3D re-
sults from Zero-1-to-3 and the results from Zero-1-to-3 ac-
celerated by DreamPropeller.

We observe that our framework can achieve almost iden-
tical generation output with much shorter runtime for both
representations. The wallclock time speedup is consistently
more than 3x and 4x the original runtime. NeRF achieves
lower speedup than the Text-to-3D counterpart due to the
lower number of total steps compared to Text-to-3D gener-
ation (e.g. 25,000 steps), so the time for the costly initial
model and data preloading for all GPUs is not effectively
amortized. 3D Gaussian Splatting is less affected thanks to
its lightweight representation conducive to fast cross-GPU
communication and DreamGaussian’s [43] simple imple-
mentation with minimal initial allocation cost.

F. Contribution and Acknowledgement
This research is done at Pika Labs and supported in
part by NSF(#1651565), ARO (W911NF-21-1-0125), ONR
(N00014-23-1-2159), CZ Biohub, HAI. Linqi Zhou led and
worked on all parts of the project and Andy Shih proposed
the initial generalized Picard iteration and contributed to
framework formulation and initial experiments. We thank
additional help and discussion with Chenlin Meng, Stefano
Ermon, Felix Petersen, Wanqiao Xu and other colleagues at
Stanford University.



Source NeRF [23] + DreamPropeller Source 3DGS [11] + DreamPropeller

11 min 38 sec 3 min 45 sec 6 min 1 sec 1 min 13 sec

10 min 53 sec 3 min 17 sec 5 min 56 sec 1 min 15 sec

10 min 51 sec 3 min 11 sec 5 min 58 sec 1 min 15 sec
Avg. Speedup 3.28x Avg. Speedup 4.8x

Figure 6. Visual comparisons for Image-to-3D generation using Zero-1-to-3 [17]. Our method achieves more than 3x and 4x average
speedup respectively when applied to Zero-1-to-3 while achieving almost identical generation results.


	. Theoretical Results
	. Algorithm
	. Additional Details on Practical Decisions
	. Experiments
	. Accelerating Image-to-3D Generation
	. Contribution and Acknowledgement

