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A. Additional Experiments
A.1. Training Detail

We adopt downstream fine-tuning configuration following
pioneer work Point-MAE [8]. More details are provided
in Tab. 1. Taking fine-tuning on ScanObjectNN [9] as an
example, the overall training includes 300 epochs, with a
cosine learning rate [6] of 5e-4, and a 10-epoch warm-up
period. AdamW optimizer [7] is used.

A.2. Scale in Dynamic Adapter

We also conduct additional experiments in Tab. 2 to fur-
ther prove the effectiveness of our dynamic scale. Using the
scale 0.1 suggested in AdaptFormer [1] or 4.0 suggested
by He et al. [2] cannot achieve satisfying results. We also
experiment with a learned scale which does not give bet-
ter results. We claim that our dynamic scale offers greater
adaptability for the intricate geometry of point clouds and
eliminates the need to adjust scale as a hyper-parameter.

A.3. Number of Internal Prompts

In previous works [3–5], external prompts are utilized by
concatenating a certain number of adjustable tokens into the
transformer’s input space. Therefore, this subsection inves-
tigates the impact of prompt numbers in DAPT on classifi-
cation tasks.

We adopt average pooling (default), max pooling, and
top-K operation to obtain internal prompts in different
length. Fig. 1 displays the results on the challenging vari-
ants (i.e., PE T50 RS) of ScanObjectNN. The results sug-
gest that simply increasing the prompt number may even
hurt the performance.

A.4. Token Selections for Head Inputs

Based on Fig. 3 in the manuscript, we conduct four other
experiments on token selections for head input, as shown in
Fig. 2. Interestingly, with the pooling of our prompts, we
can achieve better results than the pooling of patch tokens.
The only use of the pooling of Prompts exceeds only the
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Figure 1. The effect of the number of Internal Prompts.

pooling of patch tokens by 1.18%. We argue that our inter-
nal prompts better capture instance-specific features and act
as global features, providing positive assistance to down-
stream task heads.

A.5. Inference Time

In this subsection we evaluate the inference time on classi-
fication task in Tab. 3. Our DAPT achieves 311.28 frame/s
with only a negligible impact on inference speed, which is
highly competitive compared to IDPT (281.18 frame/s).

B. Qualitative Analysis

B.1. t-SNE Visualizations

In Fig. 3, the t-SNE [10] feature manifold visualization dis-
plays the models following full fine-tuning, linear probing,
IDPT, and our DAPT on the ScanObjectNN PB T50 RS
dataset. From Fig. 3(a), it is evident that the feature
distribution extracted by the ShapeNet-pretrained model
on ScanObjectNN appears less discriminative. We con-
tend that this is mainly due to the significant domain gap
between the synthetic ShapeNet and real-world ScanOb-
jectNN datasets, demonstrating the necessity for fine-tuning
on downstream tasks. With full fine-tuning in Fig. 3(b), the
feature distribution becomes more discriminative as all pa-
rameters are tuned. Fig. 3(c-d) confirms that our DAPT
helps the pre-trained model generate more distinguishable
representations with fewer learnable parameters than IDPT.
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Table 1. Training details for downstream fine-tuning.

Configuration
Classification Segmentation

ScanObjectNN ModelNet ModelNet Few-shot ShapeNetPart

Optimizer AdamW AdamW AdamW AdamW
Learning rate 5e-4 5e-4 5e-4 2e-4
Weight decay 5e-2 5e-2 5e-2 5e-2
Learning rate scheduler cosine cosine cosine cosine
Training epochs 300 300 150 300
Warmup epochs 10 10 10 10
Batch size 32 32 32 16
r in Dynamic Adapter 64 72 72 128

Number of points 2048 1024 1024 2048
Number of point patches 128 64 64 128
Point patch size 32 32 32 32
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Figure 2. The effect of different inputs for downstream task head.

(b) Full fine-tuning (c) IDPT (d) DAPT (ours)(a) Linear probing
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Figure 3. The t-SNE visualizations from the test sets of ScanObjectNN (PB T50 RS) using a pre-trained RECON with different tuning
strategies. We extract the final classification features from the top linear layer for t-SNE visualizations.

Table 2. The effect of different scale settings in Dynamic Adapter.
Type Scale #TP (M) PB T50 RS

Train: fixed 0.01 1.08 83.28

Inference: fixed 0.1 1.08 83.55
4.0 1.08 84.35

Train: learnable

Initialized with 0.01 1.08 84.07

Inference: fixed

Initialized with 0.1 1.08 84.77
Initialized with 1.0 1.08 84.32
Initialized with 4.0 1.08 84.56
Initialized with 5.0 1.08 84.49
Initialized with 10.0 1.08 84.70

Train: learnable
Dynamic scale 1.09 85.08Inference: dynamic

(Ours)

Table 3. Comparison of different fine-tuning strategy on ScanOb-
jectNN classification. Throughput is measured with a batch size
of 32 on a single RTX 4090 GPU.
Method #TP(M) FLOPs(G) Throughput (frame / s) PB T50 RS

Point-MAE [8] 22.1 4.8 323.66 85.18
IDPT [12] 1.7 7.2 281.18 84.94
DAPT (Ours) 1.1 5.0 311.28 85.08

B.2. Part Segmentation Visualizations

In Fig. 4, we visualize our DAPT part segmentation results
on Point-BERT [11] baseline. We select five representative
categories each, each with three viewpoints. Our DAPT re-
quires a small number of tunable parameters while achiev-
ing satisfying segment results.
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Figure 4. Qualitative results for part segmentation. We show our prediction projection images from three different viewpoints.
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