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6. Analysis on network design

To validate the effectiveness and necessity of each part
of our method, we conduct several ablation studies and
show results in Tab. 3. To verify the necessity of our two-
stage network design, we introduce a vanilla version of
EvDiG which is a simple U-Net architecture network (de-
noted as “EvDiG-vanilla”). The impact of our proposed
Separation Correction Block (SCB) and Color Correction
Block (CCB) is evaluated by substituting them with stan-
dard convolution layers (denoted as “EvDiG w/o SCB” and
“EvDiG w/o CCB” respectively). To evaluate impact of
the coarse separation (CS) results of the direct and global
components obtained using event accumulation, we remove
the coarse separation results from the inputs of EvSepNet
(denoted as “EvDiG w/o CS”). As indicated in Tab. 3,
our complete model demonstrates superior performance,
which highlights the contribution of each component in our
methodology.

Table 3. Ablation study of the proposed network design on our col-
lected dataset. ↑(↓) indicates the higher (lower), the better through-
out this paper. The best performances are highlighted in bold. The
content in each cell refers to the results for direct and global com-
ponents respectively.

PSNR ↑ SSIM ↑ LPIPS ↓

EvDiG-vanilla 29.05/30.54 0.862/0.829 0.097/0.139
EvDiG w/o SCB 29.55/31.33 0.878/0.840 0.085/0.129
EvDiG w/o CCB 29.54/31.22 0.876/0.839 0.086/0.131
EvDiG w/o CS 28.90/30.40 0.872/0.834 0.083/0.126
Ours 30.01/31.66 0.883/0.846 0.077/0.117

7. More details on data collection

Examples of captured scenes are presented in Fig. 9. The
data capture setup involves one projector, several types of
source occluders, and a hybrid camera system consisting of
a machine vision camera (HIKVISION MV-CA050-12UC)
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Figure 9. Examples of scenes in our captured real-world dataset.

and an event camera (PROPHESEE GEN4.1), which are co-
aligned using a beam splitter (Thorlabs CCM1-BS013). We
utilize the hybrid camera system to capture RGB images
and events simultaneously. For geometric calibration, we
use a checkerboard to deal with homography transforma-
tion and radial distortion between two views. For temporal
synchronization, we use an independent signal generator to
synchronize two cameras.

In our experiment, we employ a Panasonic PT-WX3201
LCD projector for indoor scenes. DLP projectors are not
recommended because their spinning color wheel mecha-
nism can trigger redundant events that interfere with the
separation accuracy.

In our indoor-scene dataset, we experiment with various
types of occluders, including line and mesh types. Mesh oc-
cluders, such as a 2D grid with circular holes, are tradition-
ally favored for their efficiency in image-based methods.
However, the high temporal resolution of event cameras al-
lows for equally efficient capture with a simpler line oc-
cluder. While mesh occluders may present slight efficiency
gains in the data capture phase, they also notably increase
the size of event data. This increase in data size complicates
and hinders efficient data processing. Given these consider-
ations, we predominantly utilize line occluders for achiev-
ing event-guided direct and global component separation.
This choice is informed by a balance between data capture
efficiency and the practicality of data processing.

8. Analysis of the moving speed of occluders
We attach the stick occluder to a motor to precisely con-
trol its moving speed and evaluate the performance of our
method under different moving speed of source occluders.
We capture 16 scenes at 6 varied speeds in total. The du-
ration for the occluder to traverse the scene spans a range
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Figure 10. A challenging example of our method under varied moving speed of source occluders. The time below represents the duration
for the occluder to traverse the scene.
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Figure 11. Quantitative results of our method under 6 varied mov-
ing speeds of source occluders. The capture time denotes the du-
ration for the occluder to sweep across the scene.

from 0.2s to 10s. The quantitative results are shown in
Fig. 11. Our method achieves stable performance across
all speeds, which demonstrates that our method is capable
of handling scenarios without fast-moving occluders. The
slight performance decline at lower speeds is attributable
to the increased capture of noise events. We show a chal-
lenging scene with strong interreflections in Fig. 10. This
example demonstrates that our method is able to accurately
separate the direct and global components under different
moving speed of occluders.

9. Determination of the threshold
In our experiment, we meticulously capture dynamic scene
videos across a range of specific camera settings and de-
rive the appropriate contrast threshold θ for the correspond-
ing camera parameter. This is achieved through event ac-
cumulation between adjacent frames, allowing us to accu-
rately obtain the threshold to trigger an event. Subsequently,
the data gathered from this process leads to the creation
of a look-up table for θ, serving as a valuable resource for
quickly identifying the optimal contrast threshold based on
the specific parameters of the hybrid camera system in use.

10. More qualitative comparisons
In this section, we provide additional qualitative compari-
son results on our real-world indoor scenes in Fig. 12. Both
SF-pattern-classic [3] and SF-pattern-deep [1] derive sepa-
ration results from a single pattern image. As observed in
Fig. 12, These methods tend to produce blurry separation

results with checkerboard-like artifacts. SF-scene-deep [4]
predicts the direct and global components from a single
scene image without physical cues. The comparison results
in Fig. 12 demonstrate that the absence of physical cues
renders the performance of SF-scene-deep highly depen-
dent on its training dataset, thereby constraining its abil-
ity to generalize to unseen scenes. If some regions are not
recorded within the umbra of the shadow in the captured im-
age sequence, MF-shadow-classic [3] will produce serious
artifacts in the separation results. Event cameras, with their
ability to detect scene brightness changes with microsecond
precision, continuously record the brightness changes over
time, which enables the proposed EvDiG to achieve effec-
tive and efficient direct and global components separation.

11. Results on real-world dynamic scenes
In Sec. 4.2, we demonstrate how the high temporal resolu-
tion of event cameras substantially reduces the capture time
close to that of single-frame methods. This advancement
renders our approach suitable for dynamic scenes. We con-
duct the comparative experiment against SF-scene-deep [4]
on real-world dynamic scenes. The comparison results are
illustrated in the supplementary video which can be found
on our project page.

For the data acquisition of dynamic scenes, we meticu-
lously regulate the velocity of the source occluder to surpass
the capture frequency of the RGB camera. Specifically, for
every frame obtained, we utilize the events recorded within
a 30ms window after the frame’s exposure as the input for
our method. Both EvDiG and SF-scene-deep process video
sequences in a frame-by-frame manner. Note that the appli-
cation of multi-frame-based methods to dynamic scenes is
impractical, due to their long data capture time. For the pur-
poses of visualization, we apply the same post-processing
technique [2] with identical parameter settings for both the
results from our method and those obtained using SF-scene-
deep [4] to improve temporal consistency. The comparison
results reveal that EvDiG achieves more accurate separa-
tion of direct and global components in various scenarios,
including those with camera ego-motion and object-motion.
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Figure 12. Direct and global components separation results on our real-world indoor scenes. (a)-(f) Separation results of SF-pattern-
classic [3], SF-scene-deep [4], SF-pattern-deep [1], MF-shadow-classic [3], Ours, and Reference [3].
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