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Abstract

In the main paper, we propose ExpAndable Subspace
Ensemble (EASE) for PTM-based CIL. To enable model
updating without conflict, we train a distinct lightweight
adapter module for each new task to create task-specific
subspaces. These adapters span a high-dimensional feature
space, enabling joint decision-making across multiple sub-
spaces. As data evolves, the expanding subspaces render
the old class classifiers incompatible with new-stage spaces.
Correspondingly, we design a semantic-guided prototype
complement strategy that synthesizes old classes’ new fea-
tures without using any old class instance.

In this supplementary, we provide more details about
EASE, including more implementation details and experi-
mental results.
• Section 1 introduces further analysis of EASE, including

similarity calculation, subspace expansion, upper bound
comparison, multiple runs, and running time comparison.

• Section 2 introduces the details of compared methods.
• Section 3 provides supplementary results of benchmark

datasets to the main paper.

1. Further Ablations
In this section, we conduct further analysis on EASE’s com-
ponents to investigate their effectiveness, e.g., semantic-
guided mapping and adapter-spanned subspaces. We also
include the comparison about random seeds, running time,
and the results of the upper bound.

1.1. Prototype-Prototype Similarity VS. Prototype-
Instance Similarity

In the main paper, we formulate the prototype complement
task as: given two subspaces (old and new) and two class
sets (old and new), the target is to estimate old class pro-
totypes in the new subspace P̂o,n using Po,o, Pn,o, Pn,n.
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Figure 1. Experimental results on different similarity calculation
methods. Using prototype-prototype similarity shows better
performance than prototype-instance similarity.

Among them, Po,o and Pn,o represent prototypes of old
and new classes in the old subspace (which we call co-
occurrence space), and Pn,n represents new classes proto-
types in the new subspace.



During the complement process, we construct a class-
wise similarity matrix in the old subspace:

Simi,j =
Po,o[i]

‖Po,o[i]‖2
Pn,o[j]>

‖Pn,o[j]‖2
, (1)

and then utilize it to reconstruct prototypes via class-wise
similarity in the new subspace:

P̂o,n[i] =
∑
j

Simi,j ×Pn,n[j] . (2)

However, since we have the current dataset Db in hand,
apart from class-wise similarity, we can also measure the
similarity of old class prototypes and new class instances.

Simi,j =
Pn,o[i]

‖Pn,o[i]‖2
φ(xj ;Aold)>

‖φ(xj ;Aold)‖2
. (3)

Different from prototype to prototype similarity in Eq. 1,
Eq. 3 measures the similarity of an old class prototype to a
new class instance in the same subspace. In the implemen-
tation, we can choose xj in a subset containing k instances
and obtain a similarity matrix of |Yold| × k. The choice of
these k instances is based on the relative similarity. Simi-
lar to the reconstruction process in Eq. 2, we can build the
prototype complement process via:

P̂o,n[i] =
∑
j

Simi,j × φ(xj ;Anew) . (4)

We call the prototype-instance similarity-based comple-
ment process in Eq. 4 as PIS (prototype-instance sim-
ilarity) while calling the prototype-prototype similarity-
based complement process in Eq. 2 as PPS (prototype-
prototype similarity). In this section, we conduct exper-
iments on CIFAR100 and ImageNet-R to compare these
variations. We utilize ViT-B/16-IN21K as the backbone and
keep other settings the same. We choose k in PIS among
{1, 5, 20, 50, 100, 200}.

We report the experimental results in Figure 1. As
shown in the figure, utilizing more instances (i.e., with
larger k) shows better performance. However, we find us-
ing prototype-instance similarity less effective than using
prototype-prototype similarity, even consuming more re-
sources.

1.2. Adapter VS. VPT

In the main paper, we build task-specific subspaces via
adapter tuning [1]. However, apart from adapter tuning,
there are other ways to tune the pre-trained model in a
parameter-efficient manner, e.g., visual prompt tuning [3]
(VPT). In this section, we combine our method with dif-
ferent subspace build techniques and combine EASE with
adapter and VPT, respectively. We conduct experiments
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Figure 2. Experimental results on different subspace tuning meth-
ods. Using adapter tuning shows better performance than
VPT.

on CIFAR100 and ImageNet-R. We keep other settings the
same and only change the way of subspace building, and
report results in Figure 2.

As we can infer from the figure, using adapters to build
subspaces shows better performance than using VPT, out-
performing it by 2 − 3% on these datasets. The main rea-
son lies in the difference between VPT and adapter, where
adapter tuning shows to be a stronger tuning method for
pre-trained models. Hence, we choose adapter tuning as the
way to build subspaces in EASE.

1.3. Comparison to Upper bound

In the main paper, we conduct inference using the com-
pleted prototypes. However, if we can save a subset of ex-
emplars E from former classes, we do not need to complete
former class prototypes and can directly calculate them via:

pi,b =
1

N

|E|∑
j=1

I(yj = i)φ(xj ;Ab) . (5)



Table 1. Comparison to exemplar-based upper bound. EASE

does not use any exemplars while showing competitive perfor-
mance.

Method Exemplars ImageNet-R B0 Inc20 CIFAR B0 Inc10
Ā AB Ā AB

Upper Bound 20 / class 81.73 76.08 92.32 87.79

EASE 0 81.73 76.17 92.35 87.76
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Figure 3. Results on ImageNet-R B0 Inc20 with multiple runs.
EASE consistently outperforms other methods by a substantial
margin.

We denote such a calculation process as the upper bound
since the prototypes calculated via Eq. 5 are accurate es-
timations of the class center. In this section, we compare
EASE to upper bound to show its effectiveness and report
the results in Table 1.

As we can infer from the table, EASE shows competi-
tive performance to the upper bound, achieving almost the
same results without using any exemplars. Results verify
the effectiveness of using semantic information to conduct
prototype complement.

1.4. Multiple Runs

In the main paper, we conduct experiments on different
datasets and follow [5] to shuffle class orders with ran-
dom seed 1993. In this section, we also run the exper-
iments multiple times using different random seeds, i.e.,
{1993,1994,1995,1996,1997}. Hence, we can obtain five
incremental results of different methods and report the mean
and standard variance in Figure 3.

As we can infer from the figure, EASE consistently out-
performs other methods by a substantial margin given vari-
ous random seeds.

1.5. Running Time Comparison

In this section, we report the running time comparison of
different methods. We utilize a single NVIDIA 4090 GPU
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Figure 4. Running time comparison of different methods. EASE

utilizes less running time than CODA-Prompt, L2P, and Dual-
Prompt while having better performance.

to run the experiments and report the results in Figure 4.
As we can infer from the figure, EASE requires less running
time than CODA-Prompt, L2P, and DualPrompt, while hav-
ing the best performance. Experimental results verify the
effectiveness of EASE.

2. Introduction About Compared Methods

In this section, we introduce the details of compared meth-
ods adopted in the main paper. All methods are based on
the same pre-trained model for a fair comparison. They
are listed as:

• Finetune: with a pre-trained model as initialization, it
finetunes the PTM with cross-entropy loss for every new
task. Hence, it suffers sever catastrophic forgetting on
former tasks.

• LwF [4]: aims to utilize knowledge distillation [2] to re-
sist forgetting. In each new task, it builds the mapping
between the last-stage model and the current model to re-
flect old knowledge in the current model.

• SDC [11]: utilizes a prototype-based classifier. During
model updating, the feature drifts, and the old prototypes
cannot represent former classes. Hence, it utilizes new
class instances to estimate the drift of old classes.

• L2P [9]: is the first work introducing pre-trained vision-
transformers into continual learning. During model up-
dating, it freezes the pre-trained weights and utilizes vi-
sual prompt tuning [3] to trace the new task’s features.
It builds instance-specific prompts with a prompt pool,
which is constructed via key-value mapping.

• DualPrompt [8]: is an extension of L2P, which ex-
tends the prompt into two types, i.e., general and ex-
pert prompts. The other details are kept the same with
L2P, i.e., using the prompt pool to build instance-specific
prompts.

• CODA-Prompt [6]: noticing the drawback of instance-
specific prompt select, it aims to eliminate the prompt
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Figure 5. Performance curve of different methods under different settings. All methods are initialized with ViT-B/16-IN21K. We annotate
the relative improvement of EASE above the runner-up method with numerical numbers at the last incremental stage.



selection process by prompt reweighting. The prompt se-
lection process is replaced with an attention-based prompt
recombination.

• SimpleCIL [14]: explores prototype-based classifier with
vanilla pre-trained model. With a PTM as initialization, it
builds the prototype classifier for each class and utilizes a
cosine classifier for classification.

• ADAM [14]: extends SimpleCIL by aggregating the pre-
trained model and adapted model. It treats the first in-
cremental stage as the only adaptation stage and adapts
the PTM to extract task-specific features. Hence, the
model can unify generalizability and adaptivity in a uni-
fied framework.

Above methods are exemplar-free, which do not re-
quire using exemplars. However, we also compare some
exemplar-based methods in the main paper as follows:
• iCaRL [5]: utilizes knowledge distillation and exemplar

replay to recover former knowledge. It also utilizes the
nearest center mean classifier for final classification.

• DER [10]: explores network expansion in class-
incremental learning. Facing a new task, it freezes the
prior backbone to keep it in memory and initializes a
new backbone to extract new features for the new task.
With all historical backbones in the memory, it utilizes
the concatenation as feature representation and learns a
large linear layer as the classifier. The linear layer maps
the concatenated features to all seen classes, requiring ex-
emplars for calibration. DER shows impressive results in
class-incremental learning, while it requires large mem-
ory costs for saving all historical backbones.

• FOSTER [7]: to alleviate the memory cost of DER, it
proposes to compress backbones via knowledge distilla-
tion. Hence, only one backbone is kept throughout the
learning process, and it achieves feature expansion with
low memory cost.

• MEMO [13]: aims to alleviate the memory cost of DER
from another aspect. It decouples the network structure
into specialized (deep) and generalized (shallow) layers
and extends specialized layers based on the shared gen-
eralized layers. Hence, the memory cost for network ex-
pansion decreases from a whole backbone to generalized
blocks. In the implementation, we follow [13] to decou-
ple the vision transformer at the last transformer block.

In the experiments, we reimplement the above methods
based on their source code and PyCIL [12].

3. Full Results

In this section, we show more experimental results of differ-
ent methods. Specifically, we report the incremental perfor-
mance of different methods with ViT-B/16-IN21K in Fig-
ure 5. As shown in these results, EASE consistently outper-
forms other methods on different datasets by a substantial

Algorithm 1 EASE for CIL
Input: Incremental datasets:

{
D1,D2, · · · ,DB

}
, Pre-trained

embedding: φ(x);
Output: Incrementally trained model;

1: for b = 1, 2 · · · , B do
2: Get the incremental training set Db;
3: Initialize a new adapter Ab;
4: Optimize the subspace via Eq. 5;
5: Extract the prototypes of Db for all adapters via Eq. 7;
6: Complete the prototypes for former classes via Eq. 9;
7: Construct the prototypical classifier via Eq. 10;
8: Test the model via Eq. 12;

return the updated model;

margin.

4. Pseudo Code
We summarize the training pipeline of EASE in Algo-
rithm 1. We initialize and train an adapter for each incom-
ing task to encode the task-specific information (Line 4).
Afterward, we extract the prototypes of the current dataset
for all adapters and synthesize the prototypes of former
classes (Line 6). Finally, we construct the full classifier and
reweight the logit for prediction (Line 8). Since we are us-
ing the prototype-based classifier for inference, the classi-
fier W in Eq. 5 will be dropped after each learning stage.
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