
Fast ODE-based Sampling for Diffusion Models in Around 5 Steps

Supplementary Material

A. Related Works

Ever since the birth of diffusion models [15, 44], their gen-
eration speed has become a major drawback compared to
other generative models [12, 19]. To address this issue, ef-
forts have been taken to accelerate the sampling of diffusion
models, which fall into two main streams.

One is designing faster solvers. In early works [30, 43],
the authors speed up the generation from 1000 to less than
50 NFE by reducing the number of time steps with system-
atic or quadratic sampling. Analytic-DPM [3], provides an
analytic form of optimal variance in sampling process and
improves the results. More recently, with the knowledge of
interpreting the diffusion process as a PF-ODE [45], there
is a class of ODE solvers based on numerical methods that
accelerate the sampling process to around 10 NFE. The au-
thors in EDM [18] achieve several improvements on train-
ing and sampling of diffusion models and propose to use
Heun’s second method. PDNM [23] uses linear multi-step
method to solve the PF-ODE with Runge-Kutta algorithms
for the warming start. The authors in [51] recommend to
use lower order linear multi-step method for warming start
and propose iPNDM. Given the semi-linear structure of the
PF-ODE, DPM-Solver [25] and DEIS [51] are proposed by
approximate the integral involved in the analytic solution
of PF-ODE with Taylor expansion and polynomial extrap-
olation respectively. DPM-Solver is further extend to both
single-step and multi-step methods in DPM-Solver++ [26].
UniPC [52] gives a unified predictor-corrector solver and
improved results compared to DPM-Solver++.

Besides training-free fast solvers above, there are also
solvers requiring additional training. [48] proposes a series
of reparameterization for a generalized family of DDPM
with a KID [5] loss. More related to our method, in GE-
NIE [10], the authors apply the second truncated Taylor
method [32] to the PF-ODE and distill a new model to pre-
dict the higher-order gradient term. Different from this, in
AMED-Solver, we train a network that only predict the in-
termediate time steps, instead of a high-dimensional output.

Another mainstream is training-based distillation meth-
ods, which attempt to build a direct mapping from noise dis-
tribution to implicit data distribution. This idea is first intro-
duced in [27] as an offline method where one needs to pre-
construct a dataset generated by the original model. Recti-
fied flow [24] also introduces an offline distillation based on
optimal transport. For online distillation methods, one can
progressively distill a diffusion model from more than 1k
steps to 1 step [4, 39], or utilize the consistency property of
PF-ODE trajectory to tune the denoising output [8, 13, 46].

B. Experimental Details

Datasets. We employ AMED-Solver and AMED-Plugin
on a wide range of datasets and settings. We report re-
sults on settings including unconditional generation in both
pixel and latent space, conditional generation with or with-
out guidance. Datasets are chosen with image resolutions
ranging from 32 to 512, including CIFAR10 32×32 [21],
FFHQ 64×64 [17], ImageNet 64×64 [37] and LSUN Bed-
room 256×256 [50]. We give quantitative and qualitative
results generated by stable-diffusion [34] with resolution
of 512. To further evaluate the effectiveness of our meth-
ods, in Appendix C, we also include more results on Im-
ageNet 256×256 [37] with classifier guidance and latent-
space LSUN Bedroom 256×256 [50].
Models. The pre-trained models we use throughout our ex-
periments are pixel-space models from [18], [46] as well
as [9], and latent-space models from [34]. Our code archi-
tecture is mainly based on the implementation in [18].
Fast ODE solvers. To give fair comparison, we reim-
plement several representative fast ODE solvers includ-
ing DDIM [43], DPM-Solver-2 [25], multi-step DPM-
Solver++ [26], UniPC [52] and improved PNDM (iP-
NDM) [23, 51]. Through the implementation, we obtain
better or on par FID results compared with original papers.
It is worth mentioning that during the implementation, we
find iPNDM achieves very impressive results and outper-
forms other ODE solvers in many cases.
Time schedule. We notice that different ODE solvers have
different preference on time schedule. We mainly use the
polynomial time schedule with ρ = 7, which is the default
setting in [18], except for DPM-Solver++ and UniPC where
we use logSNR time schedule recommended in original pa-
pers [26, 52] for better results. As illustrated in Sec. 3.4,
the logSNR schedule is the limit case of polynomial sched-
ule as ρ approaches +∞. Besides, for AMED-Solver on
CIFAR10 32×32 [21], FFHQ 64×64 [17] and ImageNet
64×64 [37], we use uniform time schedule which is widely
used in papers with a DDPM [15] backbone. This uni-
form time schedule is transferred from its original range
[0.001, 1] to [t1, tN] in our setting following the EDM [18]
implementation. For experiments on ImageNet 256×256
with classifier guidance and latent-space LSUN Bedroom,
the uniform time schedule gives best results. The reason
may lie in their different training process.
Training. Since there are merely 9k parameters in the
AMED predictor gϕ, its training does not cause much com-
putational cost. The training process spends its main time
on generating student and teacher trajectories. We train gϕ

for 10k images, which takes 2-8 minutes on CIFAR10 and
1-3 hours on LSUN Bedroom using a single NVIDIA A100
GPU. For the distance metric in Eq. (14), we use L2 norm
in all experiments. For the generation of teacher trajectories
for AMED-Solver, we use DPM-Solver-2 [25] or EDM [18]
with doubled NFE (M = 1). For AMED-Plugin, we use the
same solver that generates student trajectories with M = 1
for DPM-Solver-2 and M = 2 else.
Sampling. Due to designation, our AMED-Solver or
AMED-Plugin naturally create solvers with even NFE.
Therefore once AFS is used, the total NFE become odd.
With the goal of designing fast ODE solvers in ex-
tremely small NFE, we mainly test our method on NFE
∈ {3, 5, 7, 9} where AFS is applied. There are also results
on NFE ∈ {4, 6, 8, 10} without using AFS.
Evaluation. We measure the sample quality via Frechet In-
ception Distance (FID) [14], which is a well-known quan-
titative evaluation metric for image quality that aligns well
with human perception. For all the experiments involved,
we calculate FID with 50k samples using the implementa-
tion in [18]. For Stable-Diffusion, we follow [33] and eval-
uate the FID value by 30k samples generated by 30k fixed
prompts sampled from the MS-COCO [22] validation set.

C. Additional Results
C.1. Fast Degradation of Single-step Solvers

In pilot experiments, we find that the fast degradation of
single-step solvers can be alleviated by appropriate choose
of the intermediate time steps. As shown in Tab. 6, the per-
formance of DPM-Solver-2 is very sensitive to the choice of
its hyperparameter r. We apply AMED-Plugin to learn the
appropriate r and find that it achieves similar results with
the best searched r while adding little training overhead and
negligible sampling overhead.

r
NFE

4 6 8 10

0.1 28.75 17.61 11.00 5.30
0.2 24.44 21.94 8.23 4.17
0.3 37.31 30.27 6.82 3.89
0.4 75.06 43.32 7.34 4.20
0.5 (default) 146.0 60.00 10.30 5.01
0.6 241.2 79.27 15.62 6.38
AMED-Plugin 24.44 17.10 6.60 4.73

Table 6. Performance of DPM-Solver-2 on CIFAR10 is sensitive
to the choice of r. Applying AMED-Plugin on DPM-Solver-2 ef-
ficiently help to learn the appropriate r.

C.2. Ablation Study on Intermediate Steps

As illustrated in Sec. 3.4, for the teacher sampling trajec-
tory, M intermediate time steps are injected in every sam-
pling step. We use a smooth interpolation, meaning that

the teacher time schedule given by the original schedule Γ
combined with injected time steps, is equivalent to the time
schedule obtained by simply setting the total number of time
steps to (M + 1)(N − 1) + 1 in Eq. (10) under the same
ρ. In this way, we can easily extract samples on teacher
trajectories at Γ to get reference samples {ytn}Nn=1.

Here we take unconditional generation on CIFAR10 us-
ing iPNDM with AMED-Plugin as an example and provide
an ablation study on the choose of M . The student and
teacher solvers are set to be the same. The results are shown
in Tab. 7.

M
NFE

3 5 7 9

1 25.98 7.53 4.01 2.77
2 10.81 6.61 3.65 2.63
3 11.20 7.00 4.15 2.63
4 10.92 7.40 3.69 2.61
5 12.87 7.70 3.65 2.75

Table 7. The sensitivity of M on CIFAR10 with AMED-Plugin on
iPNDM. Additional time scaling factors are trained.

C.3. Ablation Study on Bottleneck Feature Input
and Time Scaling Factor

As the U-Net bottleneck input to gϕ varies for different sam-
ples, the learned parameters are sample-wise, meaning that
different trajectories have different time schedules. Since
sampling trajectories from different starting points share
similar geometric shapes, the effectiveness of inputting bot-
tleneck might be limited. We also notice that during train-
ing, the standard deviation of learned parameters in one
batch is small. Therefore, we should test if the U-Net bot-
tleneck feature input is necessary. In Tab. 8 we replace
U-Net bottleneck feature with zero matrix (w/o bottleneck)
and get shared parameters across all sampling trajectories.
The results show the effectiveness of the bottleneck fea-
ture input. Besides, the use of time scaling factors pro-
vides improved results. When applying our AMED-Plugin
on DDIM [43], iPNDM [51] and DPM-Solver++ [26] on
datasets with small resolution (32×32 and 64×64), we op-
tionally train this time scaling factors through gϕ to expand
the solution space.

Method NFE

3 5 7 9

iPNDM [23, 51] 47.98 13.59 5.08 3.17
AMED-Plugin (w/ bottleneck) 15.87 7.29 3.92 2.82
AMED-Plugin (w/o bottleneck) † 11.12 7.31 3.80 2.64
AMED-Plugin (w/ bottleneck) † 10.81 6.61 3.65 2.63

Table 8. Ablation study of the bottleneck feature input on CI-
FAR10 with AMED-Plugin on iPNDM. †: additional time scaling
factors are trained.

C.4. Ablation Study on AFS

The trick of analytical first step (AFS) is first introduced
in [10] to reduce one NFE, where the authors replace the
U-Net output in the first sampling step with the direction of
xT . In Tab. 10 and Tab. 11, we provide extended results of
Tab. 2a and Tab. 2b as well as the ablations between AFS
and our proposed AMED-Plugin. We find that the use of
AFS provides consistent improvement on datasets with res-
olutions of 32 and 64. The results show that in most cases
they can be considered as two independent components that
can together boost the performance of various ODE solvers.
However, for datasets with large resolutions, applying AFS
usually causes a large degradation (see Tab. 9).

Method AFS NFE

3 5 7 9

DPM-Solver++(3M) [26] 111.9 23.15 8.87 6.45
127.5 25.04 10.51 7.32

UniPC [52] 112.3 23.34 8.73 6.61
127.3 25.78 10.50 7.20

iPNDM [23, 51] 80.99 26.65 13.80 8.38
95.61 34.61 21.96 10.06

DPM-Solver-2 [25] 210.6 80.60 23.25 9.61
241.8 88.79 22.59 9.07

AMED-Solver (ours) 58.51 13.20 7.10 5.65

Table 9. Ablation study of AFS on pixel-space LSUN Bedroom
256×256.

C.5. More Quantitative Results

In this section, we provide additional quantitative results
on more datasets including latent-space LSUN Bedroom
256×256 [34, 50] and ImageNet 256×256 [37] with clas-
sifier guidance [9]. The results are shown in Tab. 12 and
Tab. 13.

C.6. More Qualitative Results

We give more qualitative results generated by stable-
diffusion-v1 [34] with a default classifier-free guidance
scale 7.5 in Fig. 8. Results on various datasets with NFE
of 3 and 5 are provided from Fig. 10 to Fig. 15.

D. Theoretical Analysis
In Sec. 3.1, we experimentally showed that the sampling
trajectory of diffusion models generated by an ODE solver
almost lies in a two-dimensional subspace embedded in the
ambient space. This is the core condition for the mean value
theorem to approximately hold in the vector-valued function
case. However, the sampling trajectory would not necessar-
ily lie in a plane. In this section, we analyze to what extent
will this affects our AMED-Solver, where we set the two-
dimensional subspace to be the place spanned by the first
two principal components.

(a) Text prompt: ”A portrait of an eagle”.

(b) Text prompt: ”Under a gray sky, a castle in ice and snow”.

(c) Text prompt: ”A motorcycle racer is bending”.

Figure 8. Synthesized images by Stable-Diffusion v1.4 [34] with
default classifier-free guidance scale 7.5.

Method AFS AMED NFE

3 4 5 6 7 8 9 10

Multi-step solvers

UniPC [52]
109.6 45.20 23.98 11.14 5.83 3.99 3.21 2.89
54.36 20.55 9.01 5.75 4.11 3.26 2.93 2.65

DPM-Solver++(3M) [26]†

110.0 46.52 24.97 11.99 6.74 4.54 3.42 3.00
55.74 22.40 9.94 5.97 4.29 3.37 2.99 2.71

- 21.62 - 6.82 - 4.41 - 2.76
25.95 - 7.68 - 4.51 - 3.03 -

iPNDM [23, 51]†

47.98 24.82 13.59 7.05 5.08 3.69 3.17 2.77
24.54 13.92 7.76 5.07 4.04 3.22 2.83 2.56

- 10.43 - 6.67 - 3.34 - 2.48
10.81 - 6.61 - 3.65 - 2.63 -

Single-step solvers

DDIM [43]†

93.36 66.76 49.66 35.62 27.93 22.32 18.43 15.69
67.26 49.96 35.78 28.00 22.37 18.48 15.69 13.47

- 37.72 - 25.15 - 17.03 - 11.33
38.23 - 24.44 - 15.72 - 10.93 -

DPM-Solver-2 [25]

- 146.0 - 60.00 - 10.30 - 5.01
155.7 - 57.28 - 10.20 - 4.98 -

- 24.44 - 17.10 - 6.60 - 4.73
38.48 - 28.14 - 7.46 - 4.73 -

AMED-Solver (ours)
- 17.18 - 7.04 - 5.56 - 4.14

18.49 - 7.59 - 4.36 - 3.67 -

Table 10. Unconditional generation on CIFAR10 32×32. †: additional time scaling factors {an}N−1
n=1 are trained.

Method AFS AMED NFE

3 4 5 6 7 8 9 10

Multi-step solvers

UniPC [52]
91.38 55.63 24.36 14.30 9.57 7.52 6.34 5.53
64.54 29.59 16.17 11.03 8.51 6.98 6.04 5.26

DPM-Solver++(3M) [26]†

91.52 56.34 25.49 15.06 10.14 7.84 6.48 5.67
65.20 30.56 16.87 11.38 8.68 7.12 6.25 5.58

- 53.28 - 13.68 - 7.98 - 5.57
76.51 - 15.21 - 8.36 - 6.04 -

iPNDM [23, 51]

58.53 33.79 18.99 12.92 9.17 7.20 5.91 5.11
34.81 21.32 15.53 10.27 8.64 6.60 5.64 4.97

- 23.55 - 12.05 - 7.03 - 5.01
28.06 - 13.83 - 7.81 - 5.60 -

Single-step solvers

DDIM [43]†

82.96 58.43 43.81 34.03 27.46 22.59 19.27 16.72
62.42 46.06 35.48 28.50 23.31 19.82 17.14 15.02

- 40.85 - 32.46 - 20.72 - 15.52
46.10 - 33.54 - 21.94 - 15.56 -

DPM-Solver-2 [25]

- 129.8 - 44.83 - 12.42 - 6.84
140.2 - 42.41 - 12.03 - 6.64 -

- 40.99 - 31.19 - 11.24 - 6.94
70.64 - 29.96 - 11.54 - 6.91 -

AMED-Solver (ours)
- 32.69 - 10.63 - 7.71 - 6.06

38.10 - 10.74 - 6.66 - 5.44 -

Table 11. Conditional generation on ImageNet 64×64. †: additional time scaling factors {an}N−1
n=1 are trained.

Figure 9. Following the experiment in Sec. 3.1, we calculate ∥xt − x̃t∥2 and find that we can bound it by a proper setting of Eq. (16).

Method NFE

4 6 8 10

DPM-Solver++(3M) [26] 48.55 10.01 4.61 3.62
AMED-Plugin (ours) 15.67 8.92 4.19 3.52

Table 12. Unconditional generation on latent-space LSUN Bed-
room. AMED-Plugin is applied on DPM-Solver++.

Method NFE

4 6 8 10

Guidance scale = 8.0

DPM-Solver++(3M) [26] 60.01 25.51 11.98 7.95
AMED-Plugin (ours) 39.84 21.79 13.94 9.05

Guidance scale = 4.0

DPM-Solver++(3M) [26] 27.15 10.25 7.10 6.15
AMED-Plugin (ours) 24.19 8.86 6.54 5.72

Guidance scale = 2.0

DPM-Solver++(3M) [26] 23.06 10.17 7.04 5.92
AMED-Plugin (ours) 28.81 9.56 6.42 5.46

Table 13. Conditional generation on ImageNet256 with classifier
guidance. AMED-Plugin is applied on DPM-Solver++.

Notations. Denote d as the dimension of the ambient space.
Let {xτ}Tτ=ϵ to be the solution of the PF-ODE Eq. (6).
Let {x̃τ}Tτ=ϵ to be the trajectory obtained by projecting
{xτ}Tτ=ϵ to the two-dimensional subspace spanned by its
first two principal components. Given ϵ ≤ s < m < t ≤ T
and a constant c, one step of the AMED-Solver is given by

xA
s = xt + c(s− t)ϵθ(xm,m). (15)

Define the scaled logistic function to be

f(τ) = a

(
1

1 + e−bτ
− 1

2

)
, τ ∈ R; a, b ∈ R+. (16)

Finally, define a SDE

dzτ = g(τ)dwτ , τ ∈ [s, t] (17)

with initial value 0 at t where g(τ) is a real-valued function
and wτ ∈ Rd is the standard Wiener process.

We start by the following assumptions:

Assumption 1. Assume that there exists a, b > 0 s.t.
∥xτ − x̃τ∥2 ≤ f(τ), τ ∈ [ϵ, T].

For the choice of a and b, in Fig. 9, we calculate
∥xτ − x̃τ∥2 following the experiment settings in Sec. 3.1.
We experimentally find that ∥xτ − x̃τ∥2 can be roughly up-
per bounded by setting a =

√
3d/15 and b = 3.

Assumption 2. Assume that there exists an integrable func-
tion ω : Rd+1 → Rd that generate {x̃τ}Tτ=ϵ by

x̃s = x̃t +

∫ s

t

ϵθ(xτ , τ) + ω(xτ , τ)dτ. (18)

with initial value x̃T . In this way, we can decompose the
integral in Eq. (7) into two components that parallel and
perpendicular to the plane where {x̃τ}Tτ=ϵ lies, i.e.,∫ s

t

ϵθ(xτ , τ)dτ =

∫ s

t

ϵθ(xτ , τ)ω(xτ , τ)dτ

−
∫ s

t

ω(xτ , τ)dτ.

(19)

Assumption 3. Decompose ϵθ(xm,m) in Eq. (15) into two
components as in Assumption 2 that parallel and perpendic-
ular to the plane where {x̃τ}Tτ=ϵ lies:

ϵθ(xm,m) = ϵ
∥
θ(xm,m) + ϵ⊥θ (xm,m). (20)

Assume that the parallel component is optimally learned
and for the perpendicular component, we have∥∥c(s− t)ϵ⊥θ (xm,m)

∥∥
2
≤
∥∥∥∥∫ s

t

ω(xτ , τ)dτ

∥∥∥∥
2

. (21)

Assumption 4. There exists such a g(τ) s.t. with high prob-
ability that ∥∥∥∥∫ s

t

ω(x̃τ , τ)dτ

∥∥∥∥
2

≤ ∥zs∥2 . (22)

Lemma 1. Under assumption 1 and 4, let g(τ) =
f(τ)/

√
d, then zs concentrates at a thin shell with radius

r(s, t) =
a√
b

√
1

1 + ex

∣∣∣∣bt
bs

+
b

4
(t− s). (23)

Proof. Since the SDE Eq. (17) has zero drift coefficient, its
perturbation kernel p(zs|zt = 0) is a Gaussian with zero
mean [41]. The covariance P(s, t) is given by

P(s, t) =

∫ t

s

g2(τ)dτI (24)

=
a2

d

∫ t

s

(
1

1 + e−bτ
− 1

2

)2

dτI (25)

=
a2

bd

(
1

1 + ex

∣∣∣∣bt
bs

+
b

4
(t− s)

)
︸ ︷︷ ︸

σ2(s,t)

I. (26)

By the well-known concentration of measure [47], there ex-
ists a constant c > 0 s.t. for any h ≥ 0, we have

P
(∣∣∣∥zs∥2 − |σ(s, t)|√d∣∣∣ ≥ h

)
≤ 2e−ch2

(27)

which complete the proof.

Proposition 1. Given ϵ ≤ s < t ≤ T , under the assump-
tions and Lemma 1 above, with high probability we have∥∥xs − xA

s

∥∥
2
≤ f(s) + f(t) + r(s, t). (28)

Proof. Under assumptions and Lemma 1 above, we have

∥∥xs − xA
s

∥∥
2

(29)

≤ ∥xs − x̃s∥2 +
∥∥x̃s − xA

s

∥∥
2

(30)

≤ f(s) +
∣∣∣∣∣∣xt − x̃t + c(s− t)ϵθ(xm,m) (31)

−
∫ s

t

ϵθ(xτ , τ) + ω(xτ , τ)dτ
∣∣∣∣∣∣
2

(32)

≤ f(s) + f(t) +
∣∣∣∣∣∣c(s− t)ϵ⊥θ (xm,m) (33)

+ c(s− t)ϵ
∥
θ(xm,m)−

∫ s

t

(ϵθ + ω)(xτ , τ)dτ
∣∣∣∣∣∣
2

(34)

≤ f(s) + f(t) +
∥∥c(s− t)ϵ⊥θ (xm,m)

∥∥
2

(35)

≤ f(s) + f(t) +

∥∥∥∥∫ s

t

ω(xτ , τ)dτ

∥∥∥∥
2

(36)

≤ f(s) + f(t) + r(s, t) (37)

with high probability.

(a) Baseline iPNDM solver. FID = 47.98. (b) Baseline DPM-Solver-2. FID = 155.7.

(c) AMED-Plugin applied on iPNDM solver. FID = 10.81. (d) AMED-Solver. FID = 18.49.

Figure 10. Uncurated samples on CIFAR10 32×32 with 3 NFE.

(a) Baseline iPNDM solver. FID = 58.53. (b) Baseline DPM-Solver-2. FID = 140.2.

(c) AMED-Plugin applied on iPNDM solver. FID = 28.06. (d) AMED-Solver. FID = 38.10.

Figure 11. Uncurated samples on Imagenet 64×64 with 3 NFE.

(a) Baseline iPNDM solver. FID = 45.98. (b) Baseline DPM-Solver-2. FID = 266.0.

(c) AMED-Plugin applied on iPNDM solver. FID = 26.87. (d) AMED-Solver. FID = 47.31.

Figure 12. Uncurated samples on FFHQ 64×64 with 3 NFE.

(a) Baseline iPNDM solver. FID = 13.59. (b) Baseline DPM-Solver-2. FID = 57.30.

(c) AMED-Plugin applied on iPNDM solver. FID = 6.61. (d) AMED-Solver. FID = 7.59.

Figure 13. Uncurated samples on CIFAR10 32×32 with 5 NFE.

(a) Baseline iPNDM solver. FID = 18.99. (b) Baseline DPM-Solver-2. FID = 42.41.

(c) AMED-Plugin applied on iPNDM solver. FID = 13.83. (d) AMED-Solver. FID = 10.74.

Figure 14. Uncurated samples on Imagenet 64×64 with 5 NFE.

(a) Baseline iPNDM solver. FID = 17.17. (b) Baseline DPM-Solver-2. FID = 87.10.

(c) AMED-Plugin applied on iPNDM solver. FID = 12.49. (d) AMED-Solver. FID = 14.80.

Figure 15. Uncurated samples on FFHQ 64×64 with 5 NFE.

	. Related Works
	. Experimental Details
	. Additional Results
	. Fast Degradation of Single-step Solvers
	. Ablation Study on Intermediate Steps
	. Ablation Study on Bottleneck Feature Input and Time Scaling Factor
	. Ablation Study on AFS
	. More Quantitative Results
	. More Qualitative Results

	. Theoretical Analysis

