
Feature 3DGS: Supercharging 3D Gaussian Splatting to Enable Distilled Feature
Fields

Supplementary Material

This supplement is organized as follows:
• Section A contains network architecture details;
• Section B contains more details on the training and infer-

ence settings;
• Section C contains the details of the teacher features from

2D foundation models;
• Section D contains more details of Replica dataset exper-

iment;
• Section E contains the algorithmic details of language-

guided editing;
• Section F contains ablation studies of our method;
• Section G contains failure cases of complex scenes and

reasoning analysis.

A. Details of Architectures
Parallel N-Dimensional Gaussian Rasterizer The par-
allel N-dimensional rasterizer maintains an architecture
akin to the original 3DGS rasterizer. Moreover, it employs a
point-based α-blending technique for rasterizing the feature
map. To mitigate the issue of inconsistent spatial resolution
inherent in tile-based rasterization, we ensure that both the
RGB image and the feature map are rendered at matching
sizes. Additionally, the parallel N-dimensional rasterizer is
adaptable to various foundational models, implying that its
dimensions are flexible and can vary accordingly. The de-
tail of the Parallel N-Dimensional Gaussian Rasterization is
in Algorithm 1.

Speed-up Module The primary objective of our Speed-up
Module is to modify the feature map channels, enabling the
relatively low-dimensional semantic features rendered from
3D Gaussians to align with the high-dimensional ground
truth 2D feature map. To facilitate this, we employ a convo-
lutional layer equipped with a 1× 1 kernel, offering a direct
and efficient solution. Given that we already possess the
ground truth feature map from the teacher network, which
serves as a target for the rendered feature map approxima-
tion, there is no necessity for a complex CNN architecture.
This approach simplifies the process, ensuring effective fea-
ture alignment without the need for intricate feature extrac-
tion mechanisms. More experimental results regarding per-
formance of the Speed-up Module are included in Sec. F.

B. Training and Inference Details
For the training and inference pipeline, one option is to di-
rectly render a feature map with the dimension same as the
ground-truth feature (512 for LSeg encoding and 256 for

Algorithm 1 Parallel N-Dimensional Gaussian Rasteriza-
tion

PointCloud← Structure from Motion ▷ Point Cloud
X,C ← PointCloud ▷ Position, Colors
Σ, A, F ← InitAttributes()

▷ Covariances, Opacities, Semantic Features
Ft(I)← I applying Foundation Model ▷ Feature Map
i← 0 ▷ Iteration Counter
repeat

V, I, Ft ← GetTrainingView()
▷ Camera Pose, Image, Feature Map

Î , Fs ← ParallelRasterizer(X,C,Σ, A, F, V )
▷ Rasterization

L← Loss(I, Î) + λLoss(Ft, Fs)
▷ Loss Calculation

X,Σ, C,A, F ← Adam(L)
▷ Backpropagation and Step

if IsRefinementStep(i) then
for Gaussians(x, q, c, α, f) do

if α < ε or IsTooLarge(x, q) then
RemoveGaussian()

end if
if ∇pL > τp then

if ∥S∥ > τS then
SplitGaussian(x, q, c, α, f)

▷ Over-reconstruction
else

CloneGaussian(x, q, c, α, f)
▷ Under-reconstruction

end if
end if

end for
end if
i← i+ 1 ▷ Counter Increment

until Convergence

SAM encoding). Since rendering with such large dimen-
sion slows down the training, another option is to use our
speed-up module: rendering a lower-dimensional feature
map, which is later upsampled to the ground-truth feature
dimension by a lightweight convolutional decoder. Simi-
lar to 3DGS [4], we use Adam optimizer for for optimiza-
tion during training and use a standard exponential decay
scheduling similar to [2]. For image rendering, we mainly
follow the 3DGS optimization strategy by using a 4 times
lower image resolution and upsampling twice after 250 and
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Dimension 8 16 32 64 128 256 512

Time 6:40 7:21 8:51 12:10 19:55 48:39 1:29:42
mIoU↑ 0.354 0.493 0.709 0.774 0.783 0.791 0.790
Accuracy↑ 0.735 0.880 0.927 0.939 0.944 0.944 0.943

Table A. Evaluation of Semantic Segmentation Performance Across Different Dimensions. This table presents the Time, mIoU, and
Accuracy corresponding to each dimension level with LSeg feature.

Dimension 8 16 32 64 128 256 512

PSNR↑ 36.8879 36.8871 36.9671 36.9397 37.012 36.9474 36.9150
SSIM↑ 0.9699 0.9703 0.9706 0.9708 0.9706 0.9704 0.9703
LPIPS↓ 0.0234 0.0230 0.0226 0.0229 0.0228 0.0230 0.0236

Table B. Evaluation of Image Quality Metrics Across Different Dimensions of Lseg feature. This table presents the PSNR, SSIM, and
LPIPS values corresponding to each dimension level with LSeg feature.

500 iterations. For feature rendering, we use Adam opti-
mizer with a learning rate of 1e−3. For the feature decoder
network in the additional Speed-up Module, we use a sepa-
rate Adam optimizer with a learning rate of 1e− 4.

C. Teacher Features

LSeg Feature For LSeg, we use CLIP ViT-L/16 image
encoder for ground-truth feature preparation and and ViT-
L/16 text encoder for text encoding. The ground truth fea-
ture from the LSeg image encoder has feature size 360×480
with feature dimension 512. One can either choose to di-
rectly render a h×w feature with dimension 512 or use the
Speed-up Module by rendering a lower-dimensional feature
which is later upsampled back. In practice, we use rendered
feature dim = 128 for Sec. 4.1 in our main paper.

To predict the semantic segmentation mask during infer-
ence, we reshape the rendered feature with shape (512, 360,
480) to (360× 480, 512), referred as the image feature. The
text feature from the CLIP text encoder has shape (C, 512)
where C is the number of categories. We then apply matrix
multiplication between the two to align pixel-level features
and a text query feature and perform semantic segmentation
using LSeg spatial regularization blocks.

SAM Feature Following the image encoding details in
SAM [5], we use an MAE [3] pre-trained ViT-H/16 [1] with
14× 14 windowed attention and four equally-spaced global
attention blocks. The SAM encoder first obtains the im-
age resolution of 1024 × 1024 by resizing the image and
padding the shorter side. The resolution is then 16× down-
scaled to 64×64. Since only a portion of the 64×64 feature
map contains semantic information due to the padding oper-
ation, we crop out one side of the feature map correspond-

ing to the longer side of the original image. Specifically,
suppose the original image has the resolution of H × W
where W > H , we crop the 64 ×64 feature map from
SAM encoder so that the new feature resolution becomes
64W/H×64 with the feature dimension of 256 correspond-
ing to the output dimension of the SAM encoder. In prac-
tice, we use the Speed-up Module with the rendered feature
dim = 128.

To obtain the results of promptable or promptless seg-
mentation during the inference, we perform the padding op-
eration on the rendered feature to convert from 64W/H×64
back to 64× 64 so that the SAM decoder receive the equiv-
alent semantic information as from the original SAM en-
coder.

Feature visualization As shown in Fig. D, similar to [9],
we use sklearn.decomposition.PCA [8] in scikit-learn
package for feature visualization. We set the number of
PCA components to 3 corresponding to RGB channels and
calculate the PCA mean by sampling every third element
along h × w vectors, each with feature dimension of either
512 (for LSeg) or 256 (for SAM). The feature map is trans-
formed using the PCA components and mean. This involves
centering the features with PCA mean and then projecting
them onto PCA components. We then normalize the trans-
formed feature based on the minimum and maximum values
with the outliers removed to standardize the feature values
into a consistent range so that it can be effectively visual-
ized, typically as an image. We visualize both LSeg and
SAM features of scenes from the LLFF dataset [7] from dif-
ferent views. The feature map from LSeg encoder has size
360 × 480 with dimension 512 (see in the second column
of Fig. D). However, as mentioned before, the feature map
directly obtained from SAM encoder contains a padding re-
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Dimension 8 16 32 64 128 256

PSNR↑ 36.7061 36.9145 36.8793 36.9208 36.7815 36.9139
SSIM↑ 0.9697 0.9706 0.9700 0.9701 0.9700 0.9709
LPIPS↓ 0.0234 0.0229 0.0229 0.0228 0.0228 0.0230
FPS↑ 64.7 53.9 52.7 32.8 24.2 8.3

Table C. Evaluation of Image Quality Metrics Across Different Dimensions of SAM feature. This table presents the PSNR, SSIM,
LPIPS, and FPS values corresponding to each dimension level with SAM feature.

gion (see the red areas on the bottom of the feature maps in
the third column), we crop out the region on the feature map
as the ground-truth feature before feature distillation (see in
the last column). It is worth noting that features from LSeg
models mainly capture semantic information by delineating
coarse-grained boundaries, while features from SAM mod-
els show instance-level information and even fine-grained
details in different parts of an object. The capability of
teacher encoders determines characteristics of the feature
map, thereby influencing the upper limit of the performance
of the rendered features on downstream tasks.

D. Replica Dataset Experiment
Following the same selection in [9], we experiment on 4
scenes from the Replica dataset [10]: room 0, room 1, of-
fice 3, and office 4. For each scene, 80 images are cap-
tured along a randomly chosen trajectory, and every 8th im-
age starting from the third is selected. We trained 5,000
iterations on each scene with LSeg serving as the foun-
dational model for this experiment. We manually re-label
some pixels with semantically close labels such as “rugs”
and “floor”. This preprocess step follows the same method
in the NeRF-DFF [6]. The model is trained on the training
images and was subsequently evaluated on a set of 10 test
images. We test pixel-wise mean intersection-over-union
and accuracy on the manually relabeled test images and we
use class = 7 for the mIoU metric. For room 1, the last 2
test images are excluded from the results since these images
do not have 7 classes in the image.

E. Editing Algorithm and Details
The editing procedure takes advantage of the 3D Gaussians
so that the model is able to render a novel view image edited
with a specific editing operation. As illustrated in Fig. E,
starting from a set of 3D Gaussians, i.e. X = {x1, . . . , xN}
where each xi is a 3D Gaussian represented by (fi, αi, ci)
where fi ∈ R512, αi ∈ R and ci ∈ R3 are the semantic fea-
ture, color and opacity, respectively. Guided by language,
the edit algorithm takes a input text which is a list of ob-
ject categories, e.g. ‘apple, banana, others’. We leverage
the CLIP’s ViT-B/32 text encoder for text encoding to ob-
tain the text feature {t1, . . . , tC} where ti ∈ R512 and C

is the number of categories. We then calculate the inner
product of the text feature and semantic feature followed by
a softmax function to obtain the semantic scores for each
3D Gaussian, represented by a C-dimensional vector, i.e.
scores ∈ RN×C . Queried by the text label l, e.g. ‘apple’
or a list of objects to be edited, e.g. ‘apple, banana’, one
can either choose to apply hard selection or soft selection to
perform edit operation specifically on the target region:

Soft selection: Based on the category selected by the
query label l ∈ {1, 2, . . . , C} (or l ⊆ {1, 2, . . . , C} if l
is a list of catogories), we target on the corresponding col-
umn of the score matrix, i.e. scorel = [s1l, s2l, . . . , sNl]

⊤

and apply binary thresholding on this column score vector,
i.e. for any i such that sil ≥ th, we set the position i to 1
representing being selected; otherwise the position i is set
to 0 representing not being selected. Then all the positions
i such that sli = 1 compose a target region to be edited.
Intuitively, we mask out all the 3D Gaussians that are not
selected and use those selected 3D Gaussians to update the
color set {ci}Ni=1 and opacity {αi}Ni=1.

Hard selection: We apply argmax function to the
score matrix to select the category corresponding to the
highest score for each Gaussian to obtain a filtered cate-
gory vector categories = [c1, c2, . . . , cN ]

⊤ where ci =
argmax {si1, si2, . . . , siC}. Then we filter based on the
query label l: for any i such that ci = l (or ci ∈ l if l
represents a list of target objects), we set the position i to 1
representing being selected; otherwise the position i is set
to 0 representing not being selected. Similarly, we select the
target region to be edited by preserving only the region po-
sitions of which the highest score category is aligned with
the query label.

Hybrid selection: Since soft selection applies thresh-
olding only based on column vector of score matrix corre-
sponding to label l which may potentially cause incorrect
selection when the dominant score exists in other columns
while hard selection merely selects the highest score with-
out any tunable threshold value. Therefore, we propose a
hybrid selection method by combining both hard and soft
selection to alleviate the effect of incorrectly selecting the
category while making the selection tunable to adapt to
different scenarios. Spcifically, we combine the selection
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Gaussian masks of the two methods and apply bitwise OR
operation between the two masks to obtain the final selected
region.

We then update the opacity and color based on the se-
lected edit region and a specific edit operation. We demon-
strate the details of three examples: extraction, deletion and
appearance modification:

(a) Extraction: for any i ∈ {1, . . . , N}, if i is selected,
the opacity remains to be αi; otherwise the opacity is set to
0.

(b) Deletion: for any i ∈ {1, . . . , N}, if i is selected,
the opacity is set to 0; otherwise the opacity remains to be
αi. Specifically for deletion operation, we apply the hybrid
selection method to select the target edit region to reduce
the effect of incomplete deletion caused by the absence of
target pixels.

(c) Appearance modification: for any i ∈ {1, . . . , N},
if i is selected, the color c is updated to be
appearance func(ci) where appearance func(.)
represents any appearance modification function, such as
changing the green leaves to red leaves, etc.
F. Ablation Studies
We study the effect of different rendered feature dimensions
using our Speed-up Module. In Tab. A, we report the per-
formance of the semantic segmentation on Replica dataset
using LSeg feature. The result shows that both rendered fea-
ture dim = 256 and dim = 128 can achieve the best per-
formance on accuracy, and dim = 256 is slightly better on
mIoU. However, dim = 128 is×2.4 faster than dim = 256
on training. We also report the quantitative results of novel
view synthesis in Tab. B, which shows that dim = 128 is
the best. Therefore, we choose dim = 128 for our Replica
dataset experiment in practice. In addition, we show the
performance and speed (FPS) of novel view synthesis with
different dimensions of SAM feature in Tab. C.

Furthermore, Fig. A and Fig. B substantiate that our
Speed-up Module not only avoids compromising perfor-
mance but, in fact, resulting in time savings.
G. Failure Cases
The proposed method indeed has limitations reflected on
some failure cases. In Fig. C, we showcase failure cases for
scenes that are more challenging and complex. In Fig. C
(a), the point-prompted segmentation mask is not perfect
with a coarse boundary and small holes. This is caused by
low feature quality from SAM distillation, rather than Gaus-
sian representation. Since the boundary of the car is hard
to depicted and there are multiple similar objects close to
each other (multiple adjacent cars), making the scene com-
plex. As a result, achieving a smooth and accurate mask
boundary of the car becomes challenging, which could be
counted as a limitation. In Fig. C (b), given the text prompt
“Delete the cup”, although succeeding in locating the target
object, the model fails to remove the cup comprehensively.

The reason behind is that in some complex scenes including
various objects with multiple sizes, the 3D Gaussians cor-
responding to the tiny objects with sophisticated details are
hard to accurately selected by the “Gaussian mask”. As a
result, a clean deletion is hard to perform on target object.

References
[1] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,

Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 2

[2] Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong
Chen, Benjamin Recht, and Angjoo Kanazawa. Plenoxels:
Radiance fields without neural networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5501–5510, 2022. 1

[3] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr
Dollár, and Ross Girshick. Masked autoencoders are scalable
vision learners. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 16000–
16009, 2022. 2

[4] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler,
and George Drettakis. 3d gaussian splatting for real-time
radiance field rendering. ACM Transactions on Graphics
(ToG), 42(4):1–14, 2023. 1

[5] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,
Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White-
head, Alexander C Berg, Wan-Yen Lo, et al. Segment any-
thing. arXiv preprint arXiv:2304.02643, 2023. 2

[6] Sosuke Kobayashi, Eiichi Matsumoto, and Vincent Sitz-
mann. Decomposing nerf for editing via feature field dis-
tillation. In NeurIPS, 2022. 3

[7] Ben Mildenhall, Pratul P Srinivasan, Rodrigo Ortiz-Cayon,
Nima Khademi Kalantari, Ravi Ramamoorthi, Ren Ng, and
Abhishek Kar. Local light field fusion: Practical view syn-
thesis with prescriptive sampling guidelines. ACM Transac-
tions on Graphics (TOG), 38(4):1–14, 2019. 2, 6
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Figure A. Training Time vs Speed-up Module Dimension We
test the training time required with different input dimension of
speed-up module. In this Figure, we show that the training time
can be significantly reduced with our speed-up module.
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Figure B. mIoU and Accuracy vs Dimension In this graph, we
show 2D metrics with respect to different input dimensions of
speed-up module. With our speed-up module and proper input di-
mension, the 2D metrics are not compromised.

Original image

(a)

Point prompted

Original image "Delete the cup"

(b)

Figure C. Failure cases in complex and challenging situations (a) The point-prompted segmentation mask, contains flaws in the form of
a coarse boundary and small holes, resulting from low-quality features. (b) The model fails to delete tiny sophisticated objects thoroughly
in a complex scene in language-guided editing.
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(a) Original image (b) LSeg feature (c) SAM feature (d) SAM cropped
feature 

Figure D. Feature visualization on different scenes from LLFF dataset [7] from LSeg and SAM encoders. Note that SAM features in
column (d) is obtained by cropping the padding region. We resize the cropped feature for better visualization.
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Figure E. Language-guided editing procedure using 3D Gaussians. We calculate the inner product between the semantic feature and the
text feature from CLIP encoder followed by a softmax to obtain a score matrix and query the feature field to apply editing on target regions
(obtained from soft selection / hard selection / hybrid selection) by updating opacity and color from 3D Gaussians before rendering.
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