
A. Code and Full Supplementary Material

Our code and the full supplementary material are avail-

able at https://github.com/xiaorongjun000/

Self- Rectification .

B. Comparison with Image Inpainting

Inpainting addresses a different problem, lacking the

ability to control the content generated in unknown re-

gions. Specifically, it does not fill missing regions with

source texture patterns in a coherent manner, as demon-

strated in Fig. 13 left, where a SOTA diffusion based in-

painting method, RePaint [25], is applied to our problem.

C. Comparison with Mask-guided Synthesis

using GCD Loss

Although GCD loss can be used to control the spatial dis-

tribution of texture elements, it requires accurate annotated

masks (label maps, in fact). Otherwise, its control may fail,

as shown in Fig. 13 (right).

D. Multimodal Outputs

Fig. 14 presents results where we randomly draw differ-

ent sizes of patches from the source to fill the canvas, lead-

ing to significantly variant backgrounds, yet the user edits

are all well-preserved.

E. Limitations

Fig. 15 shows two examples we collected from our full

supplementary material. The cause is attributed to the lack

of suitable source patterns in these two references (see in the

full supplementary material.) that can perfectly complete

the gap regions, leading to deviations from the user intent.

F. More Results of Guided Texture Synthesis

Fig. 16 show additional examples for guided texture syn-

thesis using color layouts. More results can be seen in our

full supplementary material.

G. Algorithm

We apply our method on a pre-trained Stable Diffusion

(SD) model, which contains an encoder E , a decoder D ,

and a noise predictor εθ. The full pipeline of our method

is depicted by Algorithms 1 to 3. Note the functions In-

vert(*) and Sample (*) refer to a DDIM inversion step and

a DDIM sampling step, respectively, and Att(*) denotes the

self-attention mechanism in Stable Diffusion.

Figure 13. Results from RePaint [25] (left), and mask-guided

GCD loss [49] (right), where the source and target masks are dis-

played in the top-right, respectively.

Figure 14. Multimodal outputs by differently filling the canvas.

Figure 15. Limitations and failure cases of our method.

Figure 16. More results of guided synthesis with color layouts.

Algorithm 1 Overall Framework

Input: Reference texture IR

Output: Output texture I

∗

1: I tar ← USER_EDIT (IR)

2: I IR ← I tar

3: ztar
T

← StruPreserving_Inversion (I tar , I IR)

4: I

∗
coarse

← FineTexture_Sampling (ztar
T

, IR)

5: z

∗
T

← StruPreserving_Inversion (I

∗
coarse

, I IR)

6: I

∗ ← FineTexture_Sampling (z

∗
T

, IR)

7: Return I

∗

https://github.com/xiaorongjun000/Self-Rectification
https://github.com/xiaorongjun000/Self-Rectification

Algorithm 2 Structure-preserving Inversion

Input: A target image I tar, an inversion reference I IR

Output: Inversion code ztar
T

1: zIR

0

← E (I IR)

2: { zIR

0

, zIR

1

, . . . , zIR
T

} ← DDIM_INVERSION (zIR

0

)

3: ztar

0

← E (I tar)

4: for t = 0 , 1 , . . . P − 1 do

5: { QIR
T − t

, K IR
T − t

, V

IR
T − t

} ← ϵθ(zIR
T − t

, t)

6: { Qtar

t

, K tar

t

, V

tar

t

} ← ϵθ(ztar

t

, t)

7: ϵ = ϵθ(ztar

t

, t) ∼ Att (Qtar

t

, K IR
T − t

, V

IR
T − t))

8: ztar

t +1

← Invert (ztar

t

, ϵ, t)

9: end for

10: for t = P , P + 1 , . . . , T − 1 do

11: { Qtar

t

, K tar

t

, V

tar

t

} ← ϵθ(ztar

t

, t)

12: ϵ = ϵθ(ztar

t

, t) ∼ Att (Qtar

t

, K tar

t

, V

tar

t

)

13: ztar

t +1

← Invert (ztar

t

, ϵ, t)

14: end for

15: Return ztar
T

Algorithm 3 Fine-texture Sampling

Input: A start code z

∗
T , a reference texture IR

Output: Output texture I

∗

1: zR

0

← E (IR)

2: { zR

0

, zR

1

, . . . , zR
T

} ← DDIM_INVERSION (zR

0)

3: for t = T , T − 1 , . . . , T − S − 1 do

4: { Q∗

t

, K

∗

t

, V

∗

t

} ← ϵθ(z

∗

t

, t)

5: ϵ = ϵθ(z

∗

t

, t) ∼ Att (Q∗

t

, K

∗

t

, V

∗

t

)

6: z

∗

t − 1

← Sample (z

∗

t

, ϵ, t)

7: end for

8: for t = T − S , T − S + 1 , . . . , 1 do

9: { QR

t

, KR

t

, V

R

t

} ← ϵθ(zR

t

, t)

10: { Q∗

t

, K

∗

t

, V

∗

t

} ← ϵθ(z

∗

t

, t)

11: ϵ = ϵθ(z

∗

t

, t) ∼ Att (Q∗

t

, KR

t

, V

R

t

)

12: z

∗

t − 1

← Sample (z

∗

t

, ϵ, t)

13: end for

14: I

∗ ← D (z

∗

0)

15: Return I

∗

