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In this supplementary material, we provide additional
analysis of the proposed HIMap, including:

• More implementation details.
• Inference speed, memory, and model size.
• Extension: 3D Map and Centerline.
• More ablation studies on the backbone, the number of

layers of the hybrid decoder, the number of points of
an element, and the number of map elements.

• Additional examples of attention maps of HIQuery.
• Qualitative analysis on both nuScenes [1] and Argov-

erse2 [9] datasets.

A. Implementation Details
BEV Feature Extraction for Multi-modality Data. Given
multi-modality inputs, i.e. multi-view RGB images and Li-
DAR point cloud data, we utilize a camera BEV feature ex-
tractor, a LiDAR BEV feature extractor, and a BEV feature
fuser to generate BEV features. The camera BEV feature
extractor is described in ?? of the main paper. LiDAR BEV
feature extractor consists of a SECOND [10] backbone to
extract sparse LiDAR features and a LiDAR-to-BEV pro-
jection module to generate LiDAR BEV features by flatten-
ing the sparse LiDAR features along the height dimension.
Then the BEV feature fuser [3] concatenates the camera
and LiDAR BEV features and utilizes a convolution layer
to fuse them.
Prediction Heads. The class head, point head, and mask
head consist of an FFN (two Linear layers) and an extra
functional layer. The class head and point head utilize an-
other Linear layer to predict the class and point coordinates
respectively. The mask head generates the element mask
by applying matrix multiplication with the element query
inside HIQuery and the BEV features.
Training. We utilize the BEVFormer [2] encoder as the
2D-to-BEV feature transformation module and set the size
of each BEV grid to 0.3m by default. The default num-
ber for map elements, points in an element, and layers of

MapTR [3] MapTRv2 [4] BeMapNet [8] HIMap (ours)

FPS 21.6 18.7 9.7 11.4
GPU mem.(MB) 2544 2888 5484 3512

Params (MB) 35.9 40.3 73.8 63.2
mAP 59.3 (-14.4) 68.7 (-5.0) 64.8 (-8.9) 73.7

Table S1. Comparison with SOTA methods on nuScenes val set.
FPSs are measured on one A100 GPU with batch size as 1.

the hybrid decoder is 50, 20, 6, respectively. For all experi-
ments, distributed training with 8 GPUs is utilized and the
total batch size is 32. The optimizer, learning rate scheduler,
base learning rate, and weight decay are set to AdamW [7],
Cosine Annealing, 0.0006, 0.01, respectively. We employ
the Hungarian matching algorithm as matching criteria to
obtain the unique assignment between predictions and GTs.
The matching cost used by Hungarian matching integrates
the matching losses of class probabilities, point coordinates,
point directions, and masks. For loss supervision of pre-
diction heads, the class head is supervised with focal loss.
The point head is with point position (L1 loss) and direction
(Cosine Embedding loss) losses. The mask head is with bi-
nary cross-entropy loss and dice loss.
Inference. Given multi-view RGB images or multi-
modality inputs, HIMap directly predicts class, point coor-
dinates, and masks of map elements. The first two kinds of
outputs are utilized for calculating the mAP result. Masks
are optional for producing rasterized HD map. Without any
post-processing, the top-scoring predictions are taken as fi-
nal results.

B. Inference Speed, Memory, and Model Size.
Comparison with SOTA methods in the above aspects are
shown in Table S1. (1) Compared with BeMapNet [8],
HIMap achieves 8.9 mAP gain with faster speed, fewer pa-
rameters, and smaller GPU memory cost. (2) Compared
with MapTRv2 [4], HIMap obtains 5.0 mAP gain with
lower efficiency. As we discussed in the Limitation part,
this paper mainly focuses on improving the map recon-
struction accuracy. We believe that HIMap boosts the per-
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Methods Epoch APped. APdiv. APbou. mAP
easy: {0.5, 1.0, 1.5}m

VectorMapNet[5] 24 36.5 35.0 36.2 35.8
MapTRv2 [4] 6 60.7 68.9 64.5 64.7

Ours 6 66.7 68.3 70.3 68.4 (+3.7)

Table S2. Comparison to the state-of-the-art on Argoverse2 val
set with 3D map predictions.

Methods Epoch APped. APdiv. APbou. APcen. mAP
easy: {0.5, 1.0, 1.5}m

MapTRv2 [4] 6 53.5 66.9 63.6 61.5 61.4
Ours 6 64.6 66.4 71.1 66.6 67.2 (+5.8)

Table S3. Comparison to the state-of-the-art on Argoverse2 val
set with 3D map predictions and centerline learning.

Modality Backbone APped. APdiv. APbou. mAP
easy: {0.5, 1.0, 1.5}m

C ResNet50 71.3 75.0 74.7 73.7
Swin-Tiny 72.3 75.9 76.3 74.8

C + L ResNet50 & Second 77.0 74.4 82.1 77.8
Swin-Tiny & Second 78.7 75.7 83.3 79.3

Table S4. Ablations about Swin [6] backbone on nuScenes val
set. ”C” and ”L” refers to Camera and LiDAR respectively.

layer number APped. APdiv. APbou. mAP
1 57.2 65.6 63.6 62.2
2 67.4 71.2 71.3 70.0
3 69.5 72.1 73.1 71.6
6 71.3 75.0 74.7 73.7
8 69.7 71.9 73.9 71.9

Table S5. Influence of layer number of hybrid decoder.

formance to an unprecedented level. Such kind of high-
accuracy models have essential values for many applica-
tion scenarios, e.g. offline HD map construction, auto label-
ing system etc. Some techniques, e.g. model quantization,
pruning, and distillation, could be explored to improve the
efficiency in future work.

C. Extension: 3D Map and Centerline.
Since Argoverse2 dataset [9] provides 3D vectorized map
annotations, we further extend HIMap to the 3D map con-
struction. A set of learnable 3D anchor points are utilized
and 3D point coordinates are directly predicted by the point
head. As shown in Table S2, on the 3D HD map construc-
tion task, HIMap also consistently exceeds previous SO-
TAs. What’s more, we further predict more categories of
elements, e.g. centerline, in the 3D map. As shown in Table
S3, with centerline included, HImap outperforms MapTRv2
[4] by 5.8 mAP.

D. More Ablation Study
Swin Transformer Backbone. We study the effect of uti-
lizing Swin-Tiny [6] backbone with different input modality
and show the results in Table S4. As we can see, replac-

point number APped. APdiv. APbou. mAP
5 48.5 72.6 60.1 60.4

10 68.8 74.1 73.1 72.0
20 71.3 75.0 74.7 73.7
30 72.1 73.8 75.0 73.7
40 70.1 70.0 73.9 71.3

Table S6. Influence of point number. The element number is set
to 50.

element number APped. APdiv. APbou. mAP
35 69.5 72.9 72.7 71.7
50 71.3 75.0 74.7 73.7
75 70.5 71.8 73.8 72.1
100 70.6 72.8 74.3 72.6

Table S7. Influence of element number. The point number is set
to 20.

ing ResNet50 with the Swin-Tiny backbone can further im-
prove the performance of HIMap. With both camera images
and LiDAR point cloud data, HIMap achieves 79.3 mAP.
Layer Number of Hybrid Decoder. We present the results
of different number of layers of the hybrid decoder in Table
S5. The results continue to improve as the number of layers
increases and reach saturation when utilizing six layers.
Number of Points. The influence of different point number
of an element (i.e. P ) is shown in Table S6. Empirically, we
find utilizing 20 points achieves the best performance. We
speculate that too few points are insufficient to express the
details of the element, while too many points increase the
optimization difficulty and reduce accuracy.
Number of Elements. The influence of different number
of elements (i.e. E) is shown in Table S7. Too small ele-
ment number intensifies the competition between elements
for HIQuery, while too large element number introduces
more False-Positive (FP) and drops the performance. We
set the element number to 50 empirically.

E. More Attention Maps of HIQuery
In Figure S1, we provide more attention maps of anchor
points with its sampling points and anchor masks for a sin-
gle map element. These visualizations validate that anchor
points and masks focus on local and overall information of
elements respectively, and point-element interaction helps
to achieve mutual refinement.

F. Qualitative Analysis
In Figure S2 and S3, we show the result comparison be-
tween BeMapNet [8], MapTRv2 [4], and the proposed
HIMap on the nuScenes [1] dataset. In Figure S4, we
present the result comparison between MapTRv2 [4] and
the proposed HIMap on the Argoverse2 [9] dataset. Our
HIMap generates impressive results in various driving
scenes. Compared with BeMapNet [8] and MapTRv2 [4],
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Figure S1. Attention maps of HIQuery at different layers. Attention maps are overlaid on the GT. The darker the color, the greater the
attention value. Best zoom-in and viewed in color.

our results have richer details, more accurate shape and
point positions of map elements, and avoid inter-element
entanglement.
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Multi-view images BeMapNet MapTRv2 Ours GT

ego car boundary divider ped. crossing

Figure S2. Qualitative result comparison on nuScenes dataset. From left to right: input multi-view images, BeMapNet predictions,
MapTRv2 predictions, our predictions, and GT annotation. Each row corresponds to one sample. For BeMapNet predictions, the semi-
closed or closed boundaries easily have shrunk shapes (1st, 2nd, 4th, 5th samples), the length of the divider is inaccurate in 3rd and 4th
samples, and the ped crossing is missing or has an incomplete shape in 3rd, 4th, 5th samples. For MapTRv2 predictions, the shape of
boundary is inaccurate in 2nd, 3rd, 4th, 5th samples, dividers are entangled in 1st, 3rd samples, and the ped crossing is missing in 3rd, 5th
samples. In comparison, our results have more accurate point positions and shapes of map elements, and avoid inter-element entanglement.
Best viewed in color.
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Figure S3. Qualitative result comparison on nuScenes dataset. From left to right: input multi-view images, BeMapNet predictions,
MapTRv2 predictions, our predictions, and GT annotation. Each row corresponds to one sample. For BeMapNet predictions, the shape
of the boundary is inaccurate in 1st, 2nd, 4th, 5th samples, the length of divider is inaccurate in 1st, and 3rd samples. For MapTRv2
predictions, the shape of the boundary is inaccurate in 1st, 2nd, 4th, 5th samples, the length of the divider is inaccurate in 1st, and 2nd
samples, and the divider and boundary are missing in 3rd samples. In comparison, our results have richer details, and more accurate point
positions and shapes of map elements. Best viewed in color.
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Figure S4. Qualitative result comparison on Argoverse2 dataset. From left to right: input multi-view images, MapTRv2 predictions,
our predictions, and GT annotation. Each row corresponds to one sample. For MapTRv2 predictions, the shape of the boundary is
inaccurate in 2nd and 4th samples, dividers are entangled in 1st and 4th samples, and ped crossing is missing in 3rd and 4th samples.
In comparison, our results have more accurate point positions and shapes of map elements, and avoid inter-element entanglement. Best
viewed in color.
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