
Appendix
In this appendix, we begin by discussing implementation details in Appendix A, which includes information about our
3D Gaussian, metrics, and the training and inference processes. We then describe the datasets used in our experiments in
Appendix B. Appendix C provides information about the baselines we compare with. Finally, Appendix D contains additional
experiment results.

A. Implementation
In this section, we begin by discussing our 3D Gaussian details, encompassing semantic, opacity and depth implementation
(Appendix A.1). Subsequently, we discuss the difference between 3D softmax and 2D softmax in 3D Semantic Scene
Reconstruction (Appendix A.2). Finally, we elucidate the evaluation metrics we utilize (Appendix A.3). Our source code
will be released.

A.1. 3D Gaussian Details

Following [18], each Gaussian has the following attributes: rotation (Rg ∈ R3×3), scale (Sg ∈ R3×1), opacity (α) and
spherical harmonics (SH). The corresponding 3D covariance matrix Σ ∈ R3×3 can be calculated using the following
formula:

Σ = RgSgS
T
g R

T
g (15)

When provided with a viewing transformation W ∈ R3×3 and the Jacobian of the affine approximation of the projective
transformation J ∈ R3×3, the covariance matrix Σ′ ∈ R3×3 in camera coordinates can be expressed as:

Σ′ = JWΣWTJT (16)

Following EWA splatting [54], we can skip the third row and column of Σ′ to obtain a 2× 2 covariance matrix with the same
structure and properties. For brevity, we still use the notation Σ′ ∈ R2×2 to denote the 2D covariance matrix.

By considering the projected 3D Gaussian center µ ∈ R2×1 and an arbitrary point x ∈ R2×1 on camera coordinates, the
opacity α′ of x contributed by this 3D Gaussian can be computed as follows:

α′ = α exp

(
−1

2
(x− µ)T (Σ′)−1(x− µ)

)
(17)

The color c of each Gaussian can be computed based on the view direction and its corresponding spherical harmonics (SH).
Given a set of sorted 3D Gaussians N along the ray, we obtain the accumulated color via volume rendering:

π : C =
∑
i∈N

ciα
′
i

i−1∏
j=1

(1− α′
j) (18)

The same volume rendering technique can be applied to obtain semantic S, depth D and optical flow F. With the given
semantic feature si, depth value di, and Gaussian motion fi relative to the camera pose, we can define the semantic rendering,
depth rendering, and flow rendering as follows:

S =
∑
i∈N

softmax(si)α′
i

i−1∏
j=1

(1− α′
j) (19)

D =
∑
i∈N

diα
′
i

i−1∏
j=1

(1− α′
j) (20)

F =
∑
i∈N

fiα
′
i

i−1∏
j=1

(1− α′
j) (21)

Note that all the projections and volume rendering techniques mentioned are implemented in CUDA. Calculating the pro-
jected 2D opacity α′ on each pixel and sorting Gaussians based on their distances from the camera takes the majority of
computations in the rendering process. These computations need to be performed only once for rendering all modalities, thus
maintaining the real-time rendering property of the original 3D Gaussian Splatting.



A.2. 3D Semantic Scene Reconstruction

We utilize Eq. (19), referred to as 3D softmax, to render semantic maps. This is in contrast to most existing NeRF-based
semantic reconstruction methods that perform softmax to the accumulated 2D logits [11, 52], described in Eq. (22), referred
to as 2D softmax. The fundamental difference between these two rendering techniques lies in the fact that 3D softmax
normalizes the logits of each 3D point. This normalization process helps prevent a single point with a significantly high logit
value from imposing an overwhelming influence on the overall volume rendering outcome. On the other hand, it also prevents
placing 3D points of low logit values in empty space. As a result, 3D softmax is effective in reducing floaters and enhancing
the geometry of the reconstruction results. In Appendix D.3, we present a comprehensive analysis of the qualitative and
quantitative comparison results between these two rendering methods.

S2D norm = softmax

∑
i∈N

siα
′
i

i−1∏
j=1

(1− α′
j)

 (22)

In the following sections, we refer to our default setting obtained by Eq. (19) as S3D norm.

A.3. Metrics

Novel View Appearance Synthesis: To assess the quality of novel view appearance synthesis, we utilize the Peak Signal-
to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), and Learned Perceptual Image Patch Similarity (LPIPS) [50]
following the common practice.

Novel View Semantic Synthesis: Following KITTI-360 [21], we evaluate the quality of novel view semantic synthesis via
the mean Intersection over Union (mIoU) metric.

3D Semantic Reconstruction: We evaluate 3D semantic reconstruction quality by extracting a 3D semantic point cloud
and comparing it with the ground truth LiDAR points. We evaluate both geometric and semantic metrics in the 3D space.
Specifically, we evaluate geometric reconstruction quality by measuring the accuracy (acc.) and completeness (comp.). Ac-
curacy measures the average distance from reconstructed points to the nearest LiDAR point, while completeness measures
the average distance from LiDAR points to the nearest reconstructed points. In order to measure the semantic quality of
the reconstructed point cloud, we map the predicted 3D semantics to the LiDAR points. Concretely, for each point in the
LiDAR point cloud, we identify its closest counterpart in the predicted semantic point cloud and allocate a semantic label
based on this nearest neighbor. The assigned semantic labels of all LiDAR points are then compared with the 3D semantic
segmentation ground truth provided by KITTI-360, evaluated via the mIoU metric. Note that we only use the LiDAR point
clouds for evaluation.

3D Tracking: To demonstrate the effectiveness of our model in rectifying noisy 3D tracking results, we evaluate the
accuracy of predicted poses compared to ground truth poses in our ablation study. Considering the rotation and translation
parameters of a ground truth bounding box denoted as R̂ and t̂, respectively, and the corresponding parameters of predicted
poses, represented as R and t, we employ two metrics for this evaluation following [8]: eR quantifies the rotation accuracy,
while et assesses the translation accuracy as follows

eR = arccos
Tr(R̂ ·R−1)− 1

2
(23)

et = ∥t̂− t∥2 (24)

where Tr represents the trace of a matrix.

Depth Estimation: In our ablation study, we evaluate the depth estimation quality of our different variants. This is achieved
by first projecting the LiDAR points acquired at the same frame to the 2D image space, followed by measuring the L2 distance
between the projected LiDAR depth and our method. Considering the projected LiDAR depth is sparse, our assessment
focuses solely on pixels with valid LiDAR projections when calculating the L2 distance.

B. Data
In this section, we present details of datasets on which we conducted our experiments, including KITTI [13], Virtual KITTI
2 (vKITTI) [7] and KITTI-360 [21].



Pre. + π RGB + Affine + π Semantic + π Flow
Speed (ms) 6.25 8.13 (+1.88) 8.54 (+0.41) 9.70 (+1.16) 10.17 (+0.47)

Table 6. Time consumption breakdown of our method.

KITTI: Following NSG [27] and MARS [40], we select frames 140 to 224 from Scene02 and frames 65 to 120 from Scene06
on KITTI for conducting our experiments.

vKITTI: Virtual KITTI 2 is a synthetic dataset that closely resembles the scenes present in KITTI. In line with the settings
outlined in NSG and MARS, we conduct experiments on exactly the same frames from Scene02 and Scene06.

KITTI-360: In addition, we perform experiments on KITTI-360, encompassing both static and dynamic scenes. For the
tasks of novel view synthesis and novel semantic synthesis on the leaderboard, we conduct experiments on the sequences
provided by the official dataset. Furthermore, we explore dynamic scenes, such as frames 11322 to 11381 from sequence 00,
as showcased in our teaser.

C. Baselines
In this section, we discuss the baselines against which we compare our approach, including NSG [27], MARS [40], PNF [19],
and Semantic Nerfacto [34].

NSG: NSG is the pioneering method that introduces the decomposition of dynamic scenes into static background and
dynamic foreground components. They propose a learned scene graph representation that enables efficient rendering of
novel scene arrangements and viewpoints. However, the official source code provided by NSG often encounters issues when
training on KITTI Scene02. Therefore, we utilize the version implemented by the authors of MARS, which is more stable
and yields slightly improved results compared to the original version.

MARS: We utilize the latest version of the code provided by the official MARS repository. This latest version incorporates
bug fixes and includes additional training iterations, resulting in improved performance. In fact, the updated version achieves
a notable improvement of 3 to 4 dB on PSNR compared to the numbers reported in the original paper.

PNF: Since PNF is not open-source, we directly compare our method to their submission on the KITTI-360 leaderboard
regarding novel view appearance & semantic synthesis. To the best of our knowledge, PNF is the only work that considers
the optimization of noisy 3D bounding boxes of dynamic objects. In our ablation study, we conduct a naı̈ve baseline that
optimizes the 3D bounding boxes of each frame independently, which can be considered as a re-implementation of PNF’s
bounding box optimization in our framework.

Semantic Nerfacto: For the evaluation of 3D semantic point cloud geometry, we compare our results with Semantic Ner-
facto [34] as an alternative to PNF [19]. Nerfacto [34] is an integration of several successful methods that demonstrate strong
performance on real data. It incorporates camera pose refinement, per-image appearance embedding, proposal sampling,
scene contraction, and hash encoding within its pipeline. Additionally, Nerfacto includes a semantic head in its framework,
enabling the generation of meaningful semantic maps, as demonstrated in Appendix D.2.

D. Additional Experiment Results
D.1. Time Consumption Breakdown

Tab. 6 shows our detailed runtime breakdown as various components are incrementally enabled. Preparation (Pre.) contains
operations like tile partition and Gaussian sorting. π denotes volume rendering, and affine denotes affine transform. Other
components like unicycle model, dynamic decomposition, and depth rendering are excluded as they hardly consume any
additional time.

D.2. Additional Comparison Experiments

Dynamic Scene with GT 3D Bounding Boxes: Despite not being our primary focus, we additionally provide a comparison
with NSG and MARS using ground truth 3D trackings. In this setting, our approach demonstrates superior performance
across all test scenes, see Tab. 7.



KITTI Scene02 KITTI Scene06 vKITTI Scene02 vKITTI Scene06
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

NSG [27] 22.51 0.653 0.397 23.38 0.717 0.243 23.50 0.718 0.352 26.42 0.811 0.170
MARS [40] 22.95 0.728 0.145 27.01 0.883 0.062 29.80 0.950 0.034 32.71 0.959 0.023
Ours 25.89 0.829 0.092 28.90 0.925 0.016 30.73 0.955 0.018 33.31 0.963 0.010

Table 7. Novel View Appearance on Dynamic Scenes with ground truth 3D trackings.

Semantic Nerfacto Ours Pseudo GT

Figure 10. Qualitative Comparison with Nerfacto on 2D space. The Pseudo GT column represents the semantic maps that are predicted
by [6] on GT RGB images.

Semantic Nerfacto Ours

Figure 11. Qualitative Comparison with Nerfacto on 3D space. The semantic point cloud extracted from Semantic Nerfacto struggles to
faithfully represent the geometry.



eR ↓ et ↓

KITTI 02 QD-3DT 0.027 0.215
Ours 0.018 0.108

KITTI 06 QD-3DT 0.017 0.046
Ours 0.012 0.033

Table 8. Qualitative Comparison with a tracking method,
QD-3DT [16], on two sequences. Figure 12. Pose comparison with QD-3DT.

Seq01 mIoUcls ↑ Seq02 mIoUcls ↑ Seq03 mIoUcls ↑ Average mIoUcls ↑
Ours w/ S2D norm 0.427 0.363 0.416 0.402
Ours w/ S3D norm 0.544 0.452 0.520 0.505

Table 9. Comparison on 3D and 2D Semantic Softmax on KITTI-360.

KITTI-360 Scene00 KITTI-360 Scene01 KITTI-360 Scene02 Average
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Random 20.84 0.784 0.150 19.40 0.705 0.171 22.55 0.800 0.136 20.93 0.763 0.457
LiDAR 25.64 0.856 0.070 22.88 0.784 0.089 24.04 0.836 0.080 24.19 0.825 0.080
COLMAP 26.23 0.863 0.069 22.94 0.794 0.096 24.38 0.843 0.077 24.52 0.833 0.081

Table 10. Quantitative Comparison with different initialization.

Details of Comparison with Semantic Nerfacto: While Semantic Nerfacto excels at rendering meaningful novel view
semantic images (as seen in Fig. 10), Fig. 11 shows it struggling to accurately reconstruct correct geometry. Following the
common practice of NeRF-based semantic reconstruction methods [34], we apply 2D softmax to Semantic Nerfacto. when
we attempted to apply the 3D Softmax technique to Nerfacto, it did not yield better results compared to using 2D softmax.
The results can be attributed to the incorrect of Nerfacto’s 3D geometry. Instead of adjusting 2D logits with large-scale
logits in 3D, the use of 3D softmax prevents the “cheating” approach by normalizing logits in 3D space. However, this
normalization requirement necessitates sufficiently accurate geometry for satisfactory results.

Comparisons with Tracking Methods: To further compare with off-the-shelf tracking methods, we show the performance
of QD-3DT [16] and our optimized pose initialized with [16] in Tab. 8 and qualitatively illustrate the poses of one vehicle in
Fig. 12. Our method consistently improves [16] across two KITTI scenes.

D.3. Additional Ablation Experiments

3D and 2D Semantic Softmax: We provide more 3D and 2D semantic logits softmax comparison in Fig. 13 and Tab. 9.
As can be seen, normalizing semantic logits in 3D space leads to notable qualitative and quantitative improvement compared
to 2D space normalization.

Improvements on Geometry: We now qualitatively examine how the optical flow loss LF and the semantic loss LS impact
the geometry, as shown in Fig. 14 and Fig. 15. Both figures reveal that incorporating either the semantic loss or the optical
flow loss improves the underlying geometry. While the impact of the semantic loss on geometry may be less evident, the
optical flow clearly enhances geometric accuracy. This improvement is rationalized by the fact that optical flow guides
correspondences across neighboring frames. It’s important to note that when the semantic loss LS is active, the sky region of
the depth maps in Fig. 14 is set to infinite.

Effects of Initialization: We conduct a thorough comparison of the results obtained through different initialization strate-
gies. In particular, we consider random initialization and COLMAP-based initialization. To further investigate whether
adopting LiDAR point cloud for initialization is helpful in urban scenes, we further consider LiDAR point clouds as ini-
tialization. We report the quantitative and qualitative comparison in Tab. 10 and Fig. 16, respectively. We observe that
both LiDAR and COLMAP initialization outperform random initialization. Interestingly, the COLMAP-based initialization
even shows a slight advantage over the LiDAR-based one. This could be attributed to the presence of points in the LiDAR



Ours w/ S2D norm Ours w/ S3D norm

Figure 13. Qualitative Comparison of 3D and 2D softmax results. Note that normalizing semantic logits in 3D space (Ours w/ S3D norm)
clearly reduces floaters and yields better 3D semantic reconstruction than the 2D normalization counterpart (Ours w/ S2D norm).

point clouds that remain unobserved in any training views, leading to artifacts in test viewpoints. Furthermore, COLMAP
improves the quality of objects located at far distances, which cannot be accurately captured by LiDAR. These findings un-
derscore the potential for achieving high-fidelity novel view synthesis in urban scenes based solely on RGB images. In our
main experiments, we adopt the COLMAP-based initialization by default.

D.4. Visualization of Optimization Progress

We present the visualization of the optimization progress for both the noisy bounding boxes and the background semantic
point cloud in Fig. 17. Using noisy 3D bounding boxes as input, our approach optimizes both the background and the poses
of the bounding boxes simultaneously. As evident, the application of physical constraints derived from the unicycle model
results in a smooth trajectory for the bounding boxes.



w/o LS, w/o LF w/ LS, w/o LF w/o LS, w/ LF w/ LS, w/ LF

Figure 14. Qualitative Comparison on depth. In the presence of the semantic loss LS (2nd and 4th columns), we set the sky region’s
depth infinite based on its semantic label. Note that the activation of either the semantic loss LS (2nd column) or the optical loss LF

(3rd column) yields enhancements in geometry, e.g., the left car in the bottom row, with the improvement in optical flow loss being more
evident.

w/o LS, w/o LF w/ LS, w/o LF w/o LS, w/ LF w/ LS, w/ LF

Figure 15. Qualitative Comparison on optical flow. While 3D Gaussians can enable the rendering of optical flow without additional
supervision on semantic or optical flow, the rendered flow maps exhibit clear artifacts (1st column). These artifacts are particularly
noticeable on the cars and the ground. Interestingly, the incorporation of semantic supervision LS mitigates the artifacts to some extent
(2nd column). Additionally, introducing pseudo-optical flow supervision LF contributes to further improvement in the optical flow results
(3rd and 4th columns).



Random LiDAR COLMAP

Figure 16. Qualitative Comparison with different initialization strategies. The superiority of both LiDAR-based and COLMAP-based
initialization over random initialization is evident. Random initialization occasionally results in significant artifacts, as illustrated by the
right building in the 1st row. LiDAR-based initialization, while generally effective, introduces artifacts in areas very close to the ego car,
such as the bottom right corner of the 4th-6th rows. These regions typically encompass LiDAR points unseen by any training views. The
COLMAP-based initialization further demonstrates an improvement over the LiDAR-based approach in distant regions, exemplified by the
trees in the 1st row.

10 steps 2000 steps 5000 steps
Figure 17. Visualization of Optimization Progress. Our method jointly optimizes the static background and the trajectory of the dynamic
foreground objects. By integrating physical constraints using the unicycle model, our method allows for recovering a smooth trajectory
from noisy 3D bounding boxes. To prevent visual clutter, we exclude point clouds of the dynamic object and only visualize the bounding
boxes.


