
L2B: Learning to Bootstrap Robust Models for Combating Label Noise

Supplementary Material

6. Appendix

6.1. Normalization function comparision.

Figure 3. Comparison among different normalization functions (i.e., Eq. 9,
Sigmoid function and Softmax function). Testing accuracy curve: (a) with
different normalization functions under 40% symmetric noise label on the
ISIC dataset. (b) with different normalization under 40% symmetric label
noise on CIFAR-100.

6.2. Alleviate potential overfitting to noisy exam-

ples.

We also plot the testing accuracy curve under different noise
fractions in Figure 4, which shows that our proposed L2B
would help preventing potential overfitting to noisy samples
compared with standard training. Meanwhile, compared to
simply sample reweighting (L2RW), our L2B introduces
pseudo-labels for bootstrapping the learner and is able to
converge to a better optimum.

Figure 4. Test accuracy v.s. number of epochs on CIFAR-100 under the
noise fraction of 20% and 40%.

7. Theoretical Analysis

7.1. Equivalence of the two learning objectives

We show that Eq. 3 is equivalent with Eq. 2 when 8i ↵i +
�i = 1. For convenience, we denote yreal

i
, ypseudo

i
,F(xi, ✓)

Figure 5. Visual comparison of prostate MRI images with noisy (con-
toured in yellow) and accurate (contoured in red) segmentation masks to
demonstrate the discrepancy in segmentation quality between the two.
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, pi respectively.
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7.2. Gradient used for updating ✓

We derivative the update rule for ↵,� in Eq. 10.
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Then ✓t+1 can be calculated by Eq. 10 using the updated
↵t,i,�t,i.

7.3. Convergence

This section provides the proof for covergence (Sec-
tion 3.3).

Theorem. Suppose that the training loss function f, g have

�-bounded gradients and the validation loss fv
is Lipschitz

smooth with constant L. With a small enough learning rate

�, the validation loss monotonically decreases for any train-
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Furthermore, Eq. 25 holds for all possible training

batches only when the gradient of validation loss function

becomes 0 at some step t, namely, G(✓t+1) = G(✓t) 8B ,
rG(✓t) = 0

Proof. At each training step t, we pick a mini-batch B
from the union of training and validation data with |B| = n.
From section B we can derivative ✓t+1 as follows:
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We omit ✓t after every function for briefness and set m
in section B equals to M . Since G(✓) is Lipschitz-smooth,
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Finally we prove G(✓t+1) = G(✓t) 8B , rG(✓t) = 0:
If rG(✓t) = 0, from section B we have ↵t,i = �t,i = 0,
then ✓t+1 = ✓t and thus G(✓t+1) = G(✓t) 8B. Otherwise,
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which means there exists a k such that rGTrfv
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for the mini-batch Bk that contains this example, we have
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