L2B: Learning to Bootstrap Robust Models for Combating Label Noise

Supplementary Material

6. Appendix

6.1. Normalization function comparision.

Figure 3. Comparison among different normalization functions (i.e., Eq. 9, Sigmoid function and Softmax function). Testing accuracy curve: (a) with different normalization functions under 40% symmetric noise label on the ISIC dataset. (b) with different normalization under 40% symmetric label noise on CIFAR-100.

6.2. Alleviate potential overfitting to noisy examples.

We also plot the testing accuracy curve under different noise fractions in Figure 4, which shows that our proposed L2B would help preventing potential overfitting to noisy samples compared with standard training. Meanwhile, compared to simply sample reweighting (L2RW), our L2B introduces pseudo-labels for bootstrapping the learner and is able to converge to a better optimum.

Figure 4. Test accuracy v.s. number of epochs on CIFAR-100 under the noise fraction of 20% and 40%.

7. Theoretical Analysis

7.1. Equivalence of the two learning objectives

We show that Eq. 3 is equivalent with Eq. 2 when $\forall i \alpha_{i}+$ $\beta_{i}=1$. For convenience, we denote $y_{i}^{\text {real }}, y_{i}^{\text {pseudo }}, \mathcal{F}\left(x_{i}, \theta\right)$

Figure 5. Visual comparison of prostate MRI images with noisy (contoured in yellow) and accurate (contoured in red) segmentation masks to demonstrate the discrepancy in segmentation quality between the two.
using $y_{i}^{r}, y_{i}^{p}, p_{i}$ respectively.

$$
\begin{align*}
& \alpha_{i} \mathcal{L}\left(p_{i}, y_{i}^{r}\right)+\beta_{i} \mathcal{L}\left(p_{i}, y_{i}^{p}\right)=\sum_{l=1}^{L} \alpha_{i} y_{i, l}^{r} \log p_{i, l} \tag{11}\\
& +\beta_{i} y_{i, l}^{p} \log p_{i, l}=\sum_{l=1}^{L}\left(\alpha_{i} y_{i, l}^{r}+\beta_{i} y_{i, l}^{p}\right) \log p_{i, l} \tag{12}
\end{align*}
$$

Due to that $\mathcal{L}(\cdot)$ is the cross-entropy loss, we have $\sum_{l=1}^{L} y_{i, l}^{r}=\sum_{l=1}^{L} y_{i, l}^{p}=1$. Then $\sum_{l=1}^{L} \alpha_{i} y_{i, l}^{r}+\beta_{i} y_{i, l}^{p}=$ $\alpha_{i}+\beta_{i}$. So if $\alpha_{i}+\beta_{i}=1$, we have

$$
\begin{array}{r}
\sum_{l=1}^{L}\left(\alpha_{i} y_{i, l}^{r}+\beta_{i} y_{i, l}^{p}\right) \log p_{i, l}=\mathcal{L}\left(p_{i}, \alpha_{i} y_{i}^{r}+\beta_{i} y_{i}^{p}\right) \\
= \tag{14}\\
\mathcal{L}\left(p_{i},\left(1-\beta_{i}\right) y_{i}^{r}+\beta_{i} y_{i}^{p}\right)
\end{array}
$$

7.2. Gradient used for updating θ

We derivative the update rule for $\boldsymbol{\alpha}, \boldsymbol{\beta}$ in Eq. 10 .

$$
\begin{align*}
\alpha_{t, i} & =-\left.\eta \frac{\partial}{\partial \alpha_{i}}\left(\sum_{j=1}^{m} f_{j}^{v}\left(\hat{\theta}_{t+1}\right)\right)\right|_{\alpha_{i}=0} \tag{15}\\
& =-\left.\eta \sum_{j=1}^{m} \nabla f_{j}^{v}\left(\hat{\theta}_{t+1}\right)^{T} \frac{\partial \hat{\theta}_{t+1}}{\partial \alpha_{i}}\right|_{\alpha_{i}=0} \tag{16}\\
& =-\eta \sum_{j=1}^{m} \nabla f_{j}^{v}\left(\hat{\theta}_{t+1}\right)^{T} \tag{17}\\
& \left.\frac{\partial\left(\theta_{t}-\left.\lambda \nabla\left(\sum_{k} \alpha_{k} f_{k}(\theta)+\beta_{k} g_{k}(\theta)\right)\right|_{\theta=\theta_{t}}\right)}{\partial \alpha_{i}}\right|_{\alpha_{i}=0} \tag{18}\\
& =\eta \lambda \sum_{j=1}^{m} \nabla f_{j}^{v}\left(\theta_{t}\right)^{T} \nabla f_{i}\left(\theta_{t}\right) \tag{19}
\end{align*}
$$

$$
\begin{align*}
\beta_{t, i} & =-\left.\eta \frac{\partial}{\partial \beta_{i}}\left(\sum_{j=1}^{m} f_{j}^{v}\left(\hat{\theta}_{t+1}\right)\right)\right|_{\beta_{i}=0} \tag{20}\\
& =-\left.\eta \sum_{j=1}^{m} \nabla f_{j}^{v}\left(\hat{\theta}_{t+1}\right)^{T} \frac{\partial \hat{\theta}_{t+1}}{\partial \beta_{i}}\right|_{\beta_{i}=0} \tag{21}\\
& =-\eta \sum_{j=1}^{m} \nabla f_{j}^{v}\left(\hat{\theta}_{t+1}\right)^{T} \tag{22}\\
& \left.\frac{\partial\left(\theta_{t}-\left.\lambda \nabla\left(\sum_{k} \alpha_{k} g_{k}(\theta)+\beta_{k} g_{k}(\theta)\right)\right|_{\theta=\theta_{t}}\right)}{\partial \beta_{i}}\right|_{\beta_{i}=0} \tag{23}\\
& =\eta \lambda \sum_{j=1}^{m} \nabla f_{j}^{v}\left(\theta_{t}\right)^{T} \nabla g_{i}\left(\theta_{t}\right) \tag{24}
\end{align*}
$$

Then θ_{t+1} can be calculated by Eq. 10 using the updated $\alpha_{t, i}, \beta_{t, i}$.

7.3. Convergence

This section provides the proof for covergence (Section 3.3).

Theorem. Suppose that the training loss function f, g have σ-bounded gradients and the validation loss f^{v} is Lipschitz smooth with constant L. With a small enough learning rate λ, the validation loss monotonically decreases for any training batch B, namely,

$$
\begin{equation*}
G\left(\theta_{t+1}\right) \leq G\left(\theta_{t}\right), \tag{25}
\end{equation*}
$$

where θ_{t+1} is obtained using Eq. 10 and G is the validation loss

$$
\begin{equation*}
G(\theta)=\frac{1}{M} \sum_{i=1}^{M} f_{i}^{v}(\theta), \tag{26}
\end{equation*}
$$

Furthermore, Eq. 25 holds for all possible training batches only when the gradient of validation loss function becomes 0 at some step t, namely, $G\left(\theta_{t+1}\right)=G\left(\theta_{t}\right) \forall B \Leftrightarrow$ $\nabla G\left(\theta_{t}\right)=0$

Proof. At each training step t, we pick a mini-batch B from the union of training and validation data with $|B|=n$. From section B we can derivative θ_{t+1} as follows:

$$
\begin{align*}
\theta_{t+1} & =\theta_{t}-\lambda \sum_{i=1}^{n}\left(\alpha_{t, i} \nabla f_{i}\left(\theta_{t}\right)+\beta_{t, i} \nabla g_{i}\left(\theta_{t}\right)\right) \tag{27}\\
& =\theta_{t}-\eta \lambda^{2} M \sum_{i=1}^{n}\left(\nabla G^{T} \nabla f_{i} \nabla f_{i}+\nabla G^{T} \nabla g_{i} \nabla g_{i}\right) \tag{28}
\end{align*}
$$

We omit θ_{t} after every function for briefness and set m in section B equals to M. Since $G(\theta)$ is Lipschitz-smooth, we have

$$
\begin{equation*}
G\left(\theta_{t+1}\right) \leq G\left(\theta_{t}\right)+\nabla G^{T} \Delta \theta+\frac{L}{2}\|\Delta \theta\|^{2} . \tag{29}
\end{equation*}
$$

Then we show $\nabla G^{T} \Delta \theta+\frac{L}{2}\|\Delta \theta\|^{2} \leq 0$ with a small enough λ. Specifically,

$$
\begin{equation*}
\nabla G^{T} \Delta \theta=-\eta \lambda^{2} M \sum_{i}\left(\nabla G^{T} \nabla f_{i}\right)^{2}+\left(\nabla G^{T} \nabla g_{i}\right)^{2} . \tag{30}
\end{equation*}
$$

Then since f_{i}, g_{i} have σ-bounded gradients, we have

$$
\begin{align*}
\frac{L}{2}\|\Delta \theta\|^{2} & \leq \frac{L \eta^{2} \lambda^{4} M^{2}}{2} \sum_{i}\left(\nabla G^{T} \nabla f_{i}\right)^{2}\left\|\nabla f_{i}\right\|^{2} \tag{31}\\
& +\left(\nabla G^{T} \nabla g_{i}\right)^{2}\left\|\nabla g_{i}\right\|^{2} \tag{32}\\
& \leq \frac{L \eta^{2} \lambda^{4} M^{2} \sigma^{2}}{2} \sum_{i}\left(\nabla G^{T} \nabla f_{i}\right)^{2}+\left(\nabla G^{T} \nabla g_{i}\right)^{2} \tag{33}
\end{align*}
$$

Then if $\lambda^{2}<\frac{2}{\eta \sigma^{2} M L}$,

$$
\begin{align*}
\nabla G^{T} \Delta \theta+\frac{L}{2}\|\Delta \theta\|^{2} & \leq\left(\frac{L \eta^{2} \lambda^{4} M^{2} \sigma^{2}}{2}-\eta \lambda^{2} M\right) \tag{34}\\
& \sum_{i}\left(\nabla G^{T} \nabla f_{i}\right)^{2}+\left(\nabla G^{T} \nabla g_{i}\right)^{2} \leq 0 . \tag{35}
\end{align*}
$$

Finally we prove $G\left(\theta_{t+1}\right)=G\left(\theta_{t}\right) \forall B \Leftrightarrow \nabla G\left(\theta_{t}\right)=0$: If $\nabla G\left(\theta_{t}\right)=0$, from section B we have $\alpha_{t, i}=\beta_{t, i}=0$, then $\theta_{t+1}=\theta_{t}$ and thus $G\left(\theta_{t+1}\right)=G\left(\theta_{t}\right) \forall B$. Otherwise, if $\nabla G\left(\theta_{t}\right) \neq 0$, we have

$$
\begin{equation*}
0<\|\nabla G\|^{2}=\nabla G^{T} \nabla G=\frac{1}{M} \sum_{i=1}^{M} \nabla G^{T} \nabla f_{i}^{v} \tag{36}
\end{equation*}
$$

which means there exists a k such that $\nabla G^{T} \nabla f_{k}^{v}>0$. So for the mini-batch B_{k} that contains this example, we have

$$
\begin{align*}
G\left(\theta_{t+1}\right)-G\left(\theta_{t}\right) & \leq \nabla G^{T} \Delta \theta+\frac{L}{2}\|\Delta \theta\|^{2} \tag{37}\\
& \leq\left(\frac{L \eta^{2} \lambda^{4} M^{2} \sigma^{2}}{2}-\eta \lambda^{2} M\right) \tag{38}\\
& \sum_{i \in B}\left(\nabla G^{T} \nabla f_{i}\right)^{2}+\left(\nabla G^{T} \nabla g_{i}\right)^{2} \tag{39}\\
& \leq\left(\frac{L \eta^{2} \lambda^{4} M^{2} \sigma^{2}}{2}-\eta \lambda^{2} M\right) \nabla G^{T} \nabla f_{k}^{v} \tag{40}
\end{align*}
$$

$$
\begin{equation*}
<0 \tag{41}
\end{equation*}
$$

