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Abstract

In the supplementary materials, we provide further de-
tails about the proposed Interactive Gaze dataset, including
the data sources, the gaze data collection procedure, and
more visualization and analysis (Sec. 1). We also include
more experimental details (Sec. 2) and additional experi-
mental results (Sec. 3).

1. Details about Interactive Gaze Dataset
1.1. Data source

The images utilized in Interactive Gaze (IG) are derived
from VCOCO [3] and HICO-det [1] datasets. Specifically,
we selected 4475 samples from the VCOCO training set,
720 samples from the VCOCO test set, and 1104 samples
from the HICO-det test set. Our initial sampling involved
a random selection process, followed by the exclusion of
samples featuring ambiguous images, unclear semantics, or
incorrect labeling. Subsequently, to address the categories
overlooked by the initial random sampling, additional sam-
ples were deliberately included. As a result of this refined
sampling strategy, the ensuing interactions exhibit an av-
erage of 13 samples per category. Notably, the <person,
sit on, chair> category boasts the maximum representation
with 91 samples, while the <person, carry, clock> category
has a minimal presence, with just one sample. The limited
number of samples in certain categories can be attributed to
their inherent scarcity within the VCOCO and HICO-det.

1.2. Gaze data collection procedure

We employ a mouse-click-based paradigm for acquir-
ing gaze fixation data, a methodology akin to previous re-
search [2, 4, 6, 7] grounded in neurophysiological and psy-
chophysical studies, which has demonstrated widespread
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efficacy. This program involves the development of a
human-computer interaction procedure designed to emulate
human gaze patterns through mouse clicks. It facilitates
large-scale data collection on gaze fixation by capturing the
behavior through a generic mouse, obviating the need for a
dedicated eye tracker.

A total of 32 participants, comprising 18 males and 14
females aged between 19 and 29 years, and possessing ei-
ther normal or corrected-to-normal vision, took part in this
study. The study was approved by the institutional review
board. Before the commencement of the experiment, each
participant thoroughly read and signed the informed con-
sent form. Additionally, they underwent a pre-experiment
orientation to familiarize themselves with the procedures.
Monetary compensation was provided upon completion of
the experiment.

During the formal experiment, participants were pre-
sented with visual images depicting a specific person and
object engaged in an interaction, accompanied by text de-
scribing the interaction. Subsequently, participants were
tasked with identifying the key visual cues within the im-
ages most pertinent to the provided interaction. It is note-
worthy that participants were specifically instructed not to
focus on cues for recognizing persons and objects, as previ-
ous gaze fixation datasets have been extensively explored.
Instead, their attention was directed toward key visual cues
associated with the interaction being performed.

To allow participants ample time to comprehend the im-
age content, they were given control over the switching of
experimental samples, with a minimum limit of 6 seconds
per sample. All image samples were standardized to a uni-
form size of 400 × 400 pixels for normalization purposes,
and the order of presentation was randomized. Participants
were permitted breaks during the experiment to ensure a
sustained and optimal mental state for subsequent tasks.

Upon concluding all experiments, we aggregated and ap-
plied a Gaussian filter to blur all mouse-click-like data as-
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sociated with the same sample, thereby generating salient
maps, following previous work [4, 8].

1.3. More visualization and analysis

Data statistics. Figure 1 illustrates the 60 most fre-
quently occurring interaction (HOI) categories in the pro-
posed Interactive Gaze dataset. Additionally, Figure 2 de-
picts the 30 most frequently occurring object categories,
while Figure 3 highlights the 30 most frequently occurring
verb categories within the same Interactive Gaze dataset.

Category organization. A detailed hierarchy HOI cate-
gory organization of the proposed Interactive Gaze dataset
is shown in Figure 4.

Comparison of mean fixation heatmaps. We compare
the mean fixation heatmaps of the object-centered represen-
tative dataset SALICON [4] and our proposed interaction-
centered IG dataset. As shown in Figure 5, both datasets
exhibit center biases. However, SALICON displays a more
pronounced bias, while the fixation probability of the IG
dataset remains relatively dispersed. This also emphasizes
that our proposed prediction of interaction-oriented atten-
tion is significantly more challenging compared to previous
object-centered attention predictions.

Visualization cases. Figure 6 presents visualizations of
the 48 instances from the proposed Interactive Gaze dataset.
In the first row, instances involve the same verb “carry” but
with different objects. The second row displays instances
attributed to the same class of HOIs, i.e., <person, cut, with
scissors>. The third and fourth rows illustrate interaction-
oriented attention in sports and restaurant scenes, respec-
tively. The fifth row showcases interaction-oriented atten-
tion in office and outdoor scenes. The sixth row focuses on
visual attention corresponding to interactions with animals.
Finally, the seventh and eighth rows complement the other
instances.

2. Experimental Details

ZeroIA setting. In light of the inherent diversity and
nearly boundless nuances within interactions, we introduce
the Zero-shot Interaction-oriented Attention (ZeroIA) pre-
diction task. This task is designed to assess the model’s pro-
ficiency in efficiently recognizing previously unseen inter-
action categories. Within the ZeroIA setting, we designate
the 213 human-object interaction (HOI) classes present in
the IG dataset, originating from the VCOCO training set, as
seen classes. The attention prediction model is trained us-
ing these classes. Concurrently, we set the 527 HOI classes
in the VCOCO test set and the HICO test set, which do not
overlap with the VCOCO training set, as unseen classes.
These unseen classes serve as the benchmark for evaluating
the attention prediction model and contain a total of 1,105
samples.

Fully supervised setting. In the fully supervised set-
ting, we train attention prediction models with the 213 HOI
classes in the IG dataset originating from the VCOCO train-
ing set and test them with 719 samples in the IG dataset
originating from the VCOCO test set.

3. More Experimental Results
Visualization of diverse model variants. Here, we se-

quentially exclude the positional adapter (PA), the visual
adapter (VA), the human-object cognitive block (HOCB),
and the interaction cognitive block (ICB) to create variant
models of the proposed Interactive Attention model. The
corresponding predicted results of these variant models are
shown in Figure 7.

Predicted results and attention visualizations of the
HOI method. We present more visualizations of the cross-
attention maps of interaction branches in original MUREN
[5] and the MUREN aligned with interaction-oriented atten-
tion, respectively, as shown in Figure 8. It is evident that the
attention map of the original MUREN appears fragmented
and struggles to focus on interaction-related visual cues,
leading to failures in interaction recognition. Conversely,
after aligning with interaction-oriented attention, not only
are the erroneous results corrected, but the attention map be-
comes significantly more interpretable and focuses on key
regions.
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Figure 1. 60 most frequently occurring interaction (HOI) categories in the proposed Interactive Gaze dataset.

Figure 2. 30 most frequently occurring object categories in the proposed Interactive Gaze dataset.



Figure 3. 30 most frequently occurring verb categories in the proposed Interactive Gaze dataset.



Figure 4. A detailed visualization of hierarchy HOI category organization in the proposed Interactive Gaze dataset. (zoom in for detail)
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Mean fixation heatmap of the proposed IG dataset   
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Figure 5. The mean fixation heatmaps of the object-centered representative dataset SALICON [4] and our proposed interaction-centered IG
dataset. Both datasets demonstrate center biases, but SALICON exhibits a more pronounced bias, whereas the fixation probability of the
IG dataset remains relatively dispersed. This also emphasizes that our proposed prediction of interaction-oriented attention is significantly
more challenging compared to previous object-centered attention predictions.
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Figure 6. More exemplars from the proposed Interactive Gaze dataset. This presents visualizations of the 48 instances. In the first row,
instances involve the same verb “carry” but with different objects. The second row displays instances attributed to the same class of
HOIs, i.e., <person, cut with, scissors>. The third and fourth rows illustrate interaction-oriented attention in sports and restaurant scenes,
respectively. The fifth row showcases interaction-oriented attention in office and outdoor scenes. The sixth row focuses on visual attention
corresponding to interactions with animals. Finally, the seventh and eighth rows complement the other instances. (zoom in for detail)
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Figure 7. Visualization of diverse model variants. We sequentially exclude the positional adapter (PA), the visual adapter (VA), the human-
object cognitive block (HOCB), and the interaction cognitive block (ICB) to create variant models of the proposed Interactive Attention
model.
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Figure 8. More predicted results and corresponding attention visualizations for MUREN and our (MUREN w/ IA, MUREN w/ Human). We
mark true positive results in green, and false positive results in red. After aligning interaction-oriented attention, the erroneous prediction
results are corrected, and the corresponding attention becomes more converged and more interpretable.
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