
Low-Rank Knowledge Decomposition for Medical Foundation Models

A. Three Pre-training Datasets
• The dataset RadImageNet [12] consists of 1.35 million images, covering 11 tasks and 3 common modalities. The distri-

bution of diseases is shown in Figure 1. In our experiments, we decompose the pre-trained models on RadImageNet [12]
(which have been publicly released by the authors) into 11 lightweight expert models corresponding to task IDs.

• The dataset MedMnist is selected from MedMnistV2 [21], consisting of 705,689 images, covering 10 tasks and 7 different
modalities. The distribution of diseases is shown in Figure 2. In our experiments, we decompose the fully pre-trained
models on MedMnist into 10 lightweight expert models corresponding to task IDs.

• The dataset Med-ML is a multi-task dataset we constructed, consisting of 119,655 images, covering 8 tasks and 5 different
modalities, including APTOS [3], ISIC [4], BUSI [7], Kvasir [15], Shenzhen X-ray [6], Shoulder X-ray [5], VinDr [14]
and Bone [8]. The distribution of diseases is shown in Figure 3. In our experiments, we decompose the fully pre-trained
models on Med-ML into 8 lightweight expert models corresponding to task IDs.
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Radimagenet [12]

Task ID Name Modality Region Labels Number

1 Lung CT Chest 6 152528
2 Abdomen CT Abdomen 28 139825
3 Thyroid Ultrasound Neck 2 92599
4 Abdomen Ultrasound Abdomen 13 297286
5 Knee MRI Knee 18 179555
6 Shoulder MRI Shoulder 14 52407
7 Spine MRI Spine 9 71674
8 Ankle MRI Foot 25 181603
9 Abdomen MRI Abdomen 26 91348
10 Brain MRI Head 10 44671
11 Hip MRI Hip 14 51417

Figure 1. Disease distribution in Radimagenet.
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MedMnist

Task ID Name Modality Region Labels Number

1 Colon Pathology Colon 9 107180
2 Retinal OCT Eye 4 109309
3 OrganC CT Abdomen 11 23660
4 Cell Microscope Blood 8 17092
5 Breast Ultrasound Breast 2 780
6 Tissue Microscope Kidney cortex 8 236386
7 Skin Dermatoscope Skin 7 10015
8 OrganA CT Abdomen 11 58850
9 OrganS CT Abdomen 11 25221
10 Chest Xray Chest 2 112120

Figure 2. Disease distribution in MedMnist.
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Task ID Name Modality Region Labels Number

1 Retinal [3] OCT Eye 5 3662
2 Skin [4] Dermatoscope Skin 3 25331
3 Breast [7] Ultrasound Breast 8 780
4 GI tract [15] RGB Gastrointestinal 8 8000
5 Lung [6] Xray Chest 2 566
6 Shoulder [5] Xray Shoulder 4 945
7 Lung [14] Xray Chest 15 67914
8 Bone [8] Xray Bone 12 12611

Figure 3. Disease distribution in Med-MT.

B. Seven Downstream Datasets
In the experiments, the downstream datasets we used include COVID [20], BTC [17], AD [1], Mura [16], AUITD [2],
HAM10000 [18], and DET10 [11]. These datasets cover five common modalities and are used to thoroughly validate the
effectiveness and generalization of our method. The description of these datasets is shown in Figure 4.
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Seven Downstream Datasets

Task ID Name Modality Region Labels Number

1 COVID [20] CT Chest 2 746
2 BTC [17] MRI Head 4 3538
3 AD [1] MRI Head 4 3264
4 Mura shoulder [16] MRI Shoulder 2 8942
5 AUTID [2] Ultrasound Neck 3 6400
6 HAM10000 [18] Dermatoscope Skin 7 10015
7 DET10 [11] Xray Chest 10 3543

Figure 4. Seven downstream datasets used in our paper.

C. Correspondence between experts and datasets
For STL-based methods, because they train models independently for each task in the pre-training dataset, the trained models
can be considered as “expert models” lacking general knowledge. In this case, fine-tuning is only performed when the
downstream task matches the model. In the main text, the “-” symbol is used to indicate whether there is a match.

For MTL-based methods, we fine-tune their shared encoders on all downstream datasets since MTL-based methods do not
generate task-specific experts.

For KF and our method LoRKD, we fine-tune the corresponding expert models on each downstream dataset. The corre-
spondence between expert models and downstream datasets can be seen in Table 1. The symbol † indicates the absence of a
corresponding expert model (due to task or modality mismatch). Following the work of [22], in such cases, we fine-tune a
shared backbone that incorporates general knowledge learned from multiple tasks.

Table 1. Correspondence between expert models and downstream datasets.

Pre-trained data COVID [20] BTC [17] AD [1] Mura s [16] AUTID [2] HAM10000 [18] DET10 [11]

Radimagenet Expert 1 Expert 10 Expert 10 Expert 6 Expert 3 † Expert 1
MedMnist Expert 10 † † † Expert 5 Expert 7 Expert 10
Med-MT † † † † † Expert 2 †



D. Efficiency Analysis
The role of our EKS conv is to construct personalized low-rank adapters for each sample in the mini-batch, and there is not
a unique way to achieve this goal. Thus, to demonstrate the efficiency advantage of EKS conv, we follow FLoRA [19] to
compare the computational costs of different methods [9, 19] from a theoretical perspective (as shown in Table. 2). Fol-
lowing [19], we denote b and l as the batch size and the maximum sequence length in the input batch, and W0 ∈ Rd×k,
Bi ∈ Rd×r, Ai ∈ Rr×k. In addition, c1 and c2 represent the computational coefficients of batched matmuls (bmm, “φ”) and
matrix multiplication (“◦”) respectively. We also omit the cost of “◦” and set d = k as [19], and T is the number of tasks.

Table 2. Efficiency comparison of different methods for constructing personalized low-rank experts for each sample in a mini-batch.

Method Improved Operation Computational Cost

LoRA [9, 19] Y = XW0 + φ(φ(X,B),A) 2c1(dblr) + c2(bld
2)

FLoRA [19] Y = A ◦ ((B ◦X)W0) c2(rbld
2)

EKS conv (ours) Y = X(W0 +
∑T

i=1(B̃A⊙M)i) Tc2(rd
2) + c2(bld

2)

Since both our EKS conv and FLoRA aim to construct personalized low-rank adapters for each sample in a mini-batch,
but their principles for improving efficiency are different. Specifically, FLoRA replaces expensive batched matmuls (bmm)
with cheap element-wise multiplications, while we perform parameter fusion before the forward pass of DNNs. If we say the
efficiency of EKS conv is better than that of FLoRA, the condition in the following must be satisfied:

rbld2

Td2r + bd2l
≥ 1 =⇒ Tr

bl
+ 1 ≤ r

Note that this inequality holds true in most real-world cases, as bl > Tr and r > 2 are common training settings. In addition,
using broadcasting to improve efficiency as [19] cannot be widely generalized to convolution operations, while our method
is not subject to this limitation.

E. Results on Larger foundation models
Considering that larger foundation models may be encountered in the real world, here we add LVM-Med [13] and BioMed-
CLIP [23] to further validate the effectiveness of our LoRKD on dataset Med-MT.

Table 3. Comparison of larger foundation models with the best baseline on the Med-MT dataset in terms of decomposition performance.

Table I Method Retinal Skin Breast GI tract Lung Shoulder Lung Bone Avg

LVM-Med best baseline 78.14 78.57 77.85 87.94 69.91 79.81 64.37 49.41 73.25
LoRKD 79.64 82.42 78.76 88.25 75.45 82.69 64.87 53.94 75.75

BioMedCLIP best baseline 78.14 78.57 77.85 87.94 69.91 79.81 64.37 49.41 73.25
LoRKD 79.64 80.52 76.89 89.19 77.88 85.58 65.12 52.53 75.92

Table 4. Comparison of larger foundation models with the best baseline on the Med-MT dataset in terms of transferability.

Table II Method COVID BTC AD Mura s AUITD HAM10000 DET10 Avg

LVM-Med best baseline 82.76 76.65 77.48 77.09 97.49 74.92 87.15 81.93
LoRKD 84.24 79.70 77.23 74.96 97.77 77.28 87.23 82.63

BioMedCLIP best baseline 82.76 76.65 77.48 77.09 97.49 74.92 87.15 81.93
LoRKD 84.24 78.68 77.98 76.91 97.49 77.28 87.34 82.96

We can summarize two following points: 1) Compared with results in submission, decomposing the larger foundation
models achieves the better decomposition and transferring performance. 2) Compared with results in these two tables, the
superiority of our method over best baselines still holds, which confirms the advantage of our method.



F. Discussion of Comparison methods
Knowledge decomposition of foundation models to save cost during serving is relatively a new topic, especially in the medical
area. The only directly correlated and available baseline is KF [22], which is proposed and verified in natural domains. Thus,
we try to verify the effectiveness of LoRKD as much as possible in the following perspectives for comprehensive comparison.

Table 5. Different types of comparison methods

Type Comparison Methods

Pre-training baseline Foundation models

Single-task direct training baseline STL

SOTA Multi-task training baselines MTL, MoCo-MTL, Aligned-MTL

Knowledge Distillation (KD) STL-KD, MTL-KD

Knowledge Decomposition (KDe) KF

Generally, we would like to form three following points by comparison: 1) By means of both pre-training models and small
models decomposed from pre-training models, the downstream task performance should be better than directly training or
multi-task collaborative training on the narrow downstream data. 2) Small models decomposed from pre-training models
will maintain and even outperform the performance of pre-training models in specific tasks, due to the merits of distillation
on pre-training model. 3) Naive distillation from pre-training models to a specific model is not better than the distillation
from pre-training models to our mixture of Low-rank Expert modules as we consider the heterogeneity harmony and the task
collaboration benefits in design.

G. Knowledge Disentanglement

(b) Ours(a) MTL

Figure 5. The CKA feature similarity matrices of MTL and Ours.

Figure 5 shows the Centered Kernel Alignment (CKA) feature similarity matrices [10] of our method and MTL on Radim-
agenet dataset. It is evident that our method exhibits significantly lower CKA feature similarity between different tasks com-
pared to MTL, which confirms the knowledge disentanglement ability of our method. This phenomenon can be attributed to
our low-rank expert modules being embedded at the convolutional level, which facilitates the simultaneous decomposition of
shallow knowledge and deep knowledge. Meanwhile, our proposed efficient knowledge decomposition convolution ensures
that this knowledge decomposition pattern can be achieved at a low cost.



H. Notation table
We add a notation table here to ease reading which is summarized as below.

Notation Description Shape

W0 Shared weight in backbone RCout×C in×k×k

Bt Low rank factors RCoutk×rk

At Low rank factors Rrk×C ink

ht Input features RB×C in×H×W

gt Output features RB×Cout×H×W

oij Output feature unit RB×Cout

h(i)(j) Input feature unit RB×C in

ω Convolution weight unit RC in×Cout

M Task label RB×T

W ′ Aggregated weight RB×Cout×C in×k×k
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