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Figure 1. An example from the COCO-MIG benchmark. (a) In
this example, COCO-MIG requires generation models to generate
“donuts” of various colors according to the specified positions and
color attributes. (b) Although the state-of-the-art layout-to-image
method GLIGEN can generate “donuts” according to the specified
position in this example, their color attributes are not correct. We
use boxes with “Attr” to mark the wrong color attributes. (c) Our
proposed MIGC can not only generate “donuts” according to the
position specified by the annotation but also ensure that the color
attribute of each generated donut instance is correct.

A. Construction Process of COCO-MIG
Benchmark

Overview. COCO-MIG benchmark uses the layout of
COCO-position benchmark [13] and assigns a specific
color attribute to each instance. COCO-MIG requires that
each instance generated not only meet the position require-
ments but also meet the attribute (i.e., color) requirements.

Step 1: Sampling layouts from COCO. We sample lay-
outs from the COCO-position [13], filter out instances with
side lengths less than 1/8 of the original image size, and
further filter out those layouts with less than two instances.
To test the model’s ability to control quantity, we divided
these layouts into five levels, L2-L6, based on the number
of instances, where Li indicates that there are i instances
in the target-generated image. A total of 160 layouts are
sampled for each level. Notably, in the process of sampling
layouts for level Li, if the number of instances surpasses i,
we selectively choose the initial i instances with the largest
area. Conversely, if the number of instances is less than i, a
resampling procedure is employed.

Step 2: Assigning color attribute to each instance. On the
basis of each sampled layout, we assign each instance a spe-
cific color from eight colors, i.e., red, yellow, green, blue,
white, black, and brown. At the same time, we write the
global prompt as ’a <attr1> <obj1>, a <attr2> <obj2>,
..., and a ...’.

B. Difference between COCO-MIG and
COCO-position

Fig. 1 shows a specific example. In this example, COCO-
MIG assigns a specific color to each “donut” based on the
COCO-position layout. Fig. 1(b) shows the results of the
state-of-the-art layout-to-image method GLIGEN [12]. It
can be seen that the results generated by GLIGEN meet
the position requirements, so this will be judged as cor-
rectly generated in the COCO-positon benchmark. How-
ever, COCO-MIG not only requires the generated instances
to meet position requirements but also attributes require-
ments. From this perspective, COCO-MIG will determine
that the results generated by GLIGEN are incorrectly gen-
erated because there are “donuts” of incorrectly generated
color attributes. Finally, it can be seen that using our pro-
posed MIGC guarantees that the position and attributes of
each generated instance are correct.

C. More MIG Results

Fig. 2 and Fig. 3 show more results obtained using MIGC
for Multi-Instance Generation. Even with complex layouts
and rich attribute descriptions, MIGC can ensure that each
instance is generated at the correct position and has the cor-
rect attributes. At the same time, if the relationship between
each instance is specified in the global prompt (e.g., action
relationship), MIGC can further control the interaction be-
tween instances.

D. More Qualitative Results on COCO-MIG

More qualitative results on our proposed COCO-MIG
benchmark are shown in Fig. 4. Compared with previous
state-of-the-art methods, our proposed MIGC approach can
better control the position, attributes, and quantity simulta-
neously.

E. Qualitative Results on DrawBench

Implementation details. DrawBench [18] is a challeng-
ing T2I benchmark. On this benchmark, we compare our
proposed MIGC with state-of-the-art text-to-image (i.e.,
AAE [2], Struc-D [4]) and layout-to-image methods (i.e.,
Box-D [20], TFLCG [3], Multi-D [1], GLIGEN [12]). For
the text-to-image methods, we directly input the Draw-
Bench’s prompt into the pipeline. For the layout-to-image
methods and our proposed MIGC, we first use GPT-4 [5, 16]
to generate the layout and then input it into the network,
forming a two-stage text-to-image pipeline.



A fantastical world inside a 
crystal ball on the table.

A small cute cat and a Pumpkin 
carriage. A squirrel artist.

Corgi sits on a cake in a 
Christmas hat, with a teddy bear 

standing next to it.
Four boats on the sea.

On a green table, a blue plant grows 
on a yellow pot and next to a red 
landline phone and a white cup.

Figure 2. Multi-Instance Generation (MIG) with our MIGC. MIGC can generate images based on various complex layouts and ensure that
the attributes of each instance are correct.



Two teddy bears holding hands 
together.

A blue rabbit with a yellow wig
taps on a green keyboard.

A squirrel in a spacesuit holds an 
apple.

Corgi looked out the sunny 
window.

Corgi sits on the beach and looks 
at the sunset sky.

A blue lion is reading a red book 
on the beach.

Figure 3. Multi-Instance Generation (MIG) with our MIGC. By specifying the relation between instances through the global prompt,
MIGC can further control the interaction of instances.
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Figure 4. More qualitative results of the proposed COCO-MIG benchmark. The first column on the left shows the target layout and
descriptions for each instance, and we use the corresponding colored boxes to describe the target color for each instance. The columns
on the right display the results of baseline and MIGC, respectively. To better observe the details of the image, we did not add any extra
annotations to the image.
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Figure 5. Qualitative comparison of DrawBench. The first and second rows show the results in the “COLOR” subtask, in which MIGC
achieves precise attribute control while obvious attribute leakage problems appear in other state-of-the-art methods. The third row shows
that MIGC can achieve precise position control. The fourth and fifth rows show that MIGC can achieve precise quantity control, especially
in the case where “cat” and “dog” exist at the same time, in which MIGC avoids the mutual influence of cat and dog semantics since MIGC
can achieve good attribute control.
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Figure 6. Architecture details of Shading Aggregation Controller.

Qualitative results. Fig. 5 shows the qualitative compar-
ison on DrawBench. The first row shows that obvious at-
tribute leakage problems (i.e., confusion between the “yel-
low” and “red” attributes) occur in the results of previ-
ous state-of-the-art methods, while our MIGC can control
the attributes of each instance very precisely. The sec-
ond row shows that previous state-of-the-art methods can-
not correctly generate a “black apple,” which is counterfac-
tual, while our MIGC can achieve good generation. The
third row indicates that MIGC can control the position more
accurately than the previous state-of-the-art method and
can effectively solve the problem of extra generation (e.g.,
both Multi-D and GLIGEN have the phenomenon of exces-
sive generation of “carrots”), mainly due to the inhibition
loss used in MIGC. The fourth row shows that MIGC can
achieve accurate quantity control while other methods gen-
erate wrong quantities. The results in the fifth row show that
when it comes to quantity control of multiple categories,
stronger attribute control (e.g., it can avoid cat attributes
from leaking to the dogs’ region) makes MIGC achieve
more accurate quantity control.

F. Details of Shading Aggregation Controller

Overview. Illustrated in Fig. 6, after obtaining the shading
results Rs = {R1

s, . . . ,R
N
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and guidance masks M = {M1, . . . ,MN ,Mbg,MLA} ∈
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Figure 7. Evaluation Pipeline.

R(N+2,1,H,W ), the Shading Aggregation Controller (SAC)
sequentially performs instance intra-attention and inter-
attention to dynamically aggregate shading results, and ag-
gregation weights summing to 1 are assigned to shading re-
sults on each spacial pixel through the softmax function,
resulting in the final shading Rfinal ∈ R(H,W,C).
Instance Intra-Attention. As shown in Fig. 6, after SAC
concats the shading results and guidance masks in the
channel dimension, it will perform instance intra-attention
through a stack of Conv-CBAM-Conv layers, in which
Conv layers are mainly used to change the channel num-
ber, and the CBAM [19] sequentially performs channel-
wise and spatial-wise attention in each instance’s feature
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Figure 8. Limitation. (a) shows that stable diffusion struggles to generate individual letters ‘C,’ ‘V,’ ‘P,’ and ‘R.’ (b) shows the failure cases
of MIGC. (c) shows the layout information of the failure case. If stable diffusion struggles to generate a specific instance, our MIGC will
also encounter difficulties when generating this instance or its combination with other instances.

map.
Instance Inter-Attention. As shown in Fig. 6, after in-
stance intra-attention, the SAC further performs instance
inter-attention, in which the SAC reshapes the features to
change the dimension order of the feature map and then uses
the CBAM to perform instance-wise attention.

G. Details of Evaluation Pipeline

Overview. The flowchart in Fig. 7 shows the details of the
evaluation pipeline, and we will introduce it by telling how
to check whether “a red vase” is accurately generated.
Position Evaluation. First, we input the generated image
into Grounding-DINO [14] to detect the bounding box of
the “vase” and then calculate the IoU with the target layout’s
bounding box. If the IoU≥0.5, this ”vase” is determined
to be Position Correctly Generated. Note that if multiple
bounding boxes are detected in the generated image, we will
select the one closest to the target layout’s bounding box to
calculate IoU.
Attribute Evaluation. After checking that the “a red
vase” is Position Correctly Generated, we will further check
whether its attribute (i.e., “red” color) is generated accu-
rately. Specifically, we will use Grounded-SAM [11] to seg-
ment the “vase” region in the generated image and mark its
area as M. Then we will calculate the area in M that meets
the “red” requirement on the HSV color space and mark it
as O. If the percentage O/M ≥ 0.2, we can consider that
this “red vase” has the correct attribute and mark it as Fully
Correctly Generated.
Evaluation for Different Benchmarks. Benchmarks re-
quiring both attribute and position control, such as our pro-
posed COCO-MIG, require each instance to be Fully Cor-
rectly Generated. Benchmarks requiring only position con-

trol, such as COCO-positon, require each instance to be Po-
sition Correctly Generated.

H. Manual Evaluation on DrawBench
We also perform a manual evaluation on DrawBench [18]
to check whether the generated images adhere to the input
text description in color, position, and count dimensions.
Specifically, ten people will participate in the evaluation,
and each generated image will be judged as ”correctly gen-
erated” or ”wrongly generated.” We show the average accu-
racy calculated based on the evaluation results of ten people.

Different from automated evaluation, which strictly con-
siders the mIoU to determine whether the local generation is
successful or not, manual evaluation mainly checks whether
the generated image satisfies the text description globally.

I. More Implementation Details
Training. We only deploy MIGC on the mid-layers (i.e.,
8×8) and the lowest-resolution decoder layers of UNet(i.e.,
16 × 16), which greatly determine the generated image’s
layout and semantic information [3, 15]. In other Cross-
Attention layers, we use the global prompt for global shad-
ing. We use COCO 2014 [13] to train MIGC. To get the in-
stance descriptions and their bounding boxes, we use stanza
[17] to split the global prompt and detect the instances with
the Grounding-DINO[14] model. To put the data in the
same batch, we fix the number of instances to 6 during train-
ing, i.e., if data contains more than 6 instances, 6 of them
will be randomly selected. If data contains less than 6 in-
stances, we complete it with null text and coordinates [0.0,
0.0, 0.0, 0.0]. We train our MIGC based on the pre-trained
stable diffusion v1.4. We use AdamW [10] optimizer with a
constant learning rate of 1e−4, and train the model for 300
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Figure 9. More baseline results. Please zoom in for the best view.

epochs with batch size 320, which requires 15 hours on 40
V100 GPUs with 16GB VRAM each.
Inference. We use EulerDiscreteScheduler [9] with 50
sample steps and use our MIGC in the first 25 steps. We se-
lect the CFG scale[8] as 7.5. As shown in Fig. 6, the channel
number of the second CBAM layer (i.e., CBAM in Instance
Inter Attention) in the Shading Aggregation Controller is re-
lated to the number of input instances. In order to allow our
MIGC to handle different numbers of instances, we set the
channel number of the second CBAM layer as max num+
2 (e.g., our default setting is 28+2, which can satisfy almost
all practical applications). In actual inference, we assume
that the number of instances to be processed is ninfer ≤
max num, and we get fintra ∈ R(1,ninfer+2,h,w) through
Instance Intra Attention. Next, we need to pad the num-
ber of channels of fintra to max num + 2. Specifically,
we enter an all-0 features fzero ∈ R1,c,h,w (i.e., this is
consistent with the shading result of null text during the
training) into Instance Intra Attention to get fpadding =
InstanceIntraAttenion(fzero), fpadding ∈ R1,1,h,w, and
we use f = concat([fintra] + [fpadding] ∗ (max num −
ninfer), dim = 1), f ∈ R1,max num+2,h,w as the input of
the CBAM layer in Instance Inter Attention. In order to
allow the network to notice the later-ordered shading in-
stances during actual inference, we will randomly shuffle
the above fpadding and fintra during training, while the
shading background and shading template will not partic-
ipate in the above shuffle process. At the same time, we
can observe that since Instance Intra Attention has elimi-
nated the larger number of original feature channels C (e.g.,
1280), the computational complexity will be very low even
when processing a larger number of shading instances in
Instance Inter Attention.

J. More Baselines
Based on the divide-and-conquer idea, we also designed
two other baselines. The qualitative comparisons are shown
in Fig.9
1)PCT-Net Pipeline. As shown in the first row of Fig.9,
we first independently generate each individual instance and

the background. Then, we use PCT-Net [6], a state-of-the-
art image fusion network, to merge all instances with the
background. Using PCT-Net to fuse the pre-generated im-
ages ensures the correctness of attributes, which verifies the
effectiveness of our divide-and-conquer idea. However, this
pipeline incurs significant inference time costs, and the gen-
erated images may lack harmony.

2)Visual Programming Pipeline. As shown in the sec-
ond row of Fig.9, Visual Programming [7] utilizes the GPT
model to parse user input commands and generate a se-
ries of predefined operations, thereby achieving function-
alities such as image editing. Here, we employ this method
to sequentially perform editing on each object in the pre-
generated images from left to right, aiming to correct the
attributes of each object as much as possible. This pipeline
is capable of correcting erroneously generated attributes.
However, it uses text to locate and edit the instance, which
lacks precise positioning capabilities and faces challenges
in deployment to real scenes with complex layouts. For ex-
ample, the 1st and 4th steps locate and affect the incorrect
cat. In addition, these methods utilize GPT to coordinate
image generation, making large-scale generation expensive
and challenging.

K. Limitation

Inspired by the idea of divide and conquer, MIGC maxi-
mizes the use of the powerful Single-Instance Generation
capability of pre-trained stable diffusion and extends it to
MIG tasks. However, for a specific instance that stable dif-
fusion cannot generate well, our MIGC will also encounter
difficulties when generating this instance or its combination
with other instances. As Fig.8(a) shows, stable diffusion has
difficulty generating individual letters accurately. There-
fore, when using MIGC to generate the words ‘CVPR’ in
the layout of Fig.8(c), we see that although MIGC correctly
controls the color attribute of each letter, the content of the
actual letters is wrong, causing the entire sample to fail, as
shown in Fig.8(b).
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