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1. Overview of Appendix
In this supplementary material, we first provide more im-

plementation details in Sec. 2, including the model, training

and inference details. Then we present more benchmark re-

sults in Sec. 3. Further, we give more discussions and the

limitation of our tracking framework in Sec. 4. Finally, we

provide more visualization results in Sec. 5.

2. Additional Implementation Details
In this section, we first provide more details about the dif-

fusion model. Then, we depict the details of our proposed

encoder. We also illustrate the multi-stage diffusion decoder

used in the limitation subsection of the main text. Finally,

we present more details about training, inference, and com-

putation efficiency, which supplement our main text.

2.1. More about diffusion model

We provide a detailed review of the formulation of diffusion

models, following the notion of [7, 11, 22]. Starting from a

data distribution z0 ∼ q(z0), we define a forward Marko-

vian noising process q which produces data samples z1, z2,

..., zT by gradually adding Gaussian noise at each timestep

t. In particular, the added noise is scheduled by the variance

βt ∈ (0, 1):

q(z1:T |z0) :=
T∏

t=1

q(zt|zt−1) (1)

q(zt|zt−1) := N (zt;
√

1− βtzt−1, βtI) (2)

As noted by Ho et al. [11], we can directly sample data zt
at an arbitrary timestep t without the need of applying q
repeatedly:

q(zt|z0) := N (zt;
√
ᾱtz0, (1− ᾱt)I) (3)

:=
√
ᾱtz0 + ε

√
1− ᾱt, ε ∈ N (0, I) (4)
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where ᾱt :=
∏t

s=0 αs and αt := 1 − βt. Then, we could

use ᾱt instead of βt to define the noise schedule.

Based on Bayes’ theorem, it is found that the posterior

q(zt−1|zt, z0) is a Gaussian distribution as well:

q(zt−1|zt, z0) = N (zt−1; μ̃(zt, z0), β̃tI) (5)

where

μ̃t(zt, z0) :=

√
ᾱt−1βt

1− ᾱt
z0 +

√
αt(1− ᾱt−1)

1− ᾱt
zt (6)

and

β̃t :=
1− ᾱt−1

1− ᾱt
βt (7)

are the mean and variance of this Gaussian distribution.

We could get a sample from q(z0) by first sampling from

q(zT ) and running the reversing steps q(zt−1|zt) until z0.

Besides, the distribution of q(zT ) is nearly an isotropic

Gaussian distribution with a sufficiently large T and rea-

sonable schedule of βt (βt → 0), which making it triv-

ial to sample zT ∼ N (0, I). Moreover, since calculating

q(zt−1|zt) exactly should depend on the entire data dis-

tribution, we could approximate q(zt−1|zt) using a neural

network, which is optimized to predict a mean μθ and a di-

agonal covariance matrix Σθ:

pθ(zt−1|zt) := N (zt−1;μθ(zt, t),Σθ(zt, t)) (8)

Instead of directly parameterizing μθ(zt, t), Ho et al. [11]

found learning a network fθ(zt, t) to predict the ε or z0
from Equation (4) worked best. We choose to predict z0 in

this work.

2.2. Multi-stage DiffusionTrack

We introduce the model details of the limitation experiment

in main text. As shown in Fig. 1, our six diffusion layers

are not all connected to the last layer of encoder as that of
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Model Hier. Attn. Layer Channel Param. Speed

SwinT � Win. (2,2,18,2) (96,128,256, 512) 88M 106FPS

ViT � GL. (0,0,12,0) (0,0,768,0) 86M 95FPS

HViT � GL. (2,2,20,0) (128,256,512,0) 64M 89FPS

Table 1. Architectural variants of three vision transformers:

SwinT [18], ViT [8] and our HViT. Hier. denotes hierachical struc-

ture. Attn denotes the attention computation. Win. and GL. denote

window attention and vanilla global attention.

Figure 1. The detailed pipeline of our multi-stage DiffusionTrack.

We insert three diffusion based decoder into the shallow, mid and

deep stages of the encoder. The output of each decoder can be sent

into the next decoder for collaborative prediction.

DiffusionTracking in main text. Every two diffusion layers

are assigned to different stages of encoder. For the shal-

low layer, we choose the 6th encoder layer while 9th and

12th are chosen as the mid and deep layer. Thus, we con-

struct three diffusion decoders, while each of them has two

diffusion layers. On shallow, mid and deep decoders, the

output target estimations of each decoder are sent to the

next decoder. Thus, on the easy video cases, by applying

early exit strategy, the forward inference of encoder can

be suspend in early stage which greatly raise the tracking

speed. Moreover, it also can exploit hierarchical features

of encoder. We will do future research on achieving a bet-

ter trade of efficiency and effectiveness and finding optimal

encoder-decoder structure.

2.3. Training details

We introduce more training details which is a supplement

to the main text. we train our model on the training splits

of COCO [17], TrackingNet [21], LaSOT [9], and GOT-

10k [12] datasets. For the video datasets (TrackingNet, La-

SOT, and GOT-10k), we directly sample the image pairs

from one video sequence to collect training samples. For

COCO detection datasets, we apply some transformations

to the original image to generate image pairs. Common

data augmentation (such as translation and brightness jit-

ter) is applied to enlarge the training set. The sizes of the

search region patch and template patch are 256 × 256 and

256 × 256, respectively. The backbone parameters are ini-

tialized with Masked Image Modelling pre-training weights

from DropTrack [25], and other parameters of our model

are initialized with Xavier init [10]. We train the model with

AdamW [19], setting the backbone’s learning rate to 1e-5,

other parameters’ learning rate to 1e-4, and weight decay

to 1e-4. We train the network on 4 NVIDIA A800 with 64

sample pairs on each GPU (batch size 112) for 300 epochs

with 60,000 sample pairs per epoch.

2.4. Inference details

We introduce more inference details which is a supplement

to the main text. The renewal strategy, voting strategy and

early exit scheme are described in details.

Renewal strategy. During online inference, our diffusion

decoder generates output layer by layer. Each layer has

N target estimations GN and its corresponding confidence

scores CN . Each layer refines the target estimation based

on the previous estimations, except for the first layer which

refines the initialized random estimations. Thus, we pro-

pose a renewal strategy inspired by [3] which make each

two diffusion layers can collaborate with each other. To be

more specific, for N predictions Gl
N in lth diffusion layer,

we only preserve the N1 predictions, whose corresponding

confidence scores CN1 are larger than a pre-defined value

0.7. Then the N1 high-scoring predictions are concatenated

with N −N1 estimations initialized from a random noise:

Gl+1
N = Concat(Gl

N1,Random(N −N1)). (9)

The high-scoring part can prevent repeated predictions and

contribute to the voting process. The random part is for

searching the target again from the background. Then, the

Gl+1
N estimations are used for the prediction of next diffu-

sion layer.

Voting strategy. During online inference, each Diffusion

Layer (DL) output independent target estimations GN and

its corresponding confidence scores CN . Except for the ini-

tialized target estimations, we have total L groups of pre-

dictions for total L diffusion layers. For lth diffusion layer,

we have:

Gl
N , Cl

N = DLl(z, x, t, GN
l−1), (10)

then, we collect the total L groups of predictions:

PL = {Gl
N , Cl

N}Ll=1. (11)

The total L × N groups of point set vote for the final pre-

diction result. First, we remove target estimations with low-

scoring values, which are most likely to locate at back-

ground. Thus, we have high-scoring target estimations.

However, there are quantities of repeated predictions among

them. Therefor, inspired by NMS processing [23] in de-

tectors, we filter out repeated prediction results {b}ni=1 and

count the number of repeated predictions num:

{(b, num)}ni=1 = NMSwithCOUNT{Gl
N}Ll=1. (12)



Model Encoder Decoder Param. Flops. Speed

E1 ViT DL×1 12.4M 28.1G 45FPS

E2 ViT DL×2 25.1M 36.2G 42FPS

E3 ViT DL×3 37.4M 41.8G 39FPS

E4 ViT DL×6 74.8M 53.2G 30FPS

Table 2. Computation efficiency analysis on DiffusionTrack.

Params. indicates the model parameters of decoder.

Method OTB100 [26] NFS [14] UAV123 [20]

DiffusionTrack-b256 (1) 70.3 65.8 68.7

STARK [27] 68.5 66.2 68.2

TransT [4] 69.4 65.7 69.1

TrDiMP [24] 69.6 66.5 67.5

DiMP [2] 68.4 61.8 64.3

Ocean [29] 68.6 49.4 57.4

ATOM [6] 66.9 58.3 63.2

ECO [5] 69.1 52.2 53.5

RT-MDNet [13] 67.8 43.3 52.8

SiamFC[1] 57.5 37.7 46.8

Table 3. Comparison with state-of-the-art methods on addi-

tional benchmarks in AUC score: OTB100 [26], NFS [14] and

UAV123 [20].

After NMS processing, The one with the largest number

of overlapped predictions are chosen as the final prediction

result. Thus, our voting strategy ensure that all target esti-

mations participate in the visual tracking process.

Early exit scheme. As mentioned above, we have total to-

tal L × N groups of target estimations and corresponding

scoring values. Each N predictions are generated layer by

layer. Thus, we apply a simple threshold strategy to just

whether the current predictions are confident enough to find

the ground truth target. If the maximum confidence value

of current predictions is larger than a pre-defined threshold

value, we conclude that the target is find. Thus, we suspend

the model inference process at current layer. It can facilitate

the model inference speed as presented in the main text.

2.5. Computation efficiency analysis

We analyze the computation efficiency of DiffusionTrack.

The model parameter and computation Flops are presentaed

in Tab. 2.

3. Additional Benchmark Results

In this section, we present more experimental results

on additional VOT benchmarks which is a supplement to

the main text. It includes UAV123 [20], OTB100 [26],

VOT2020 [16] and NFS [14] datasets. As shown in Tab 3

and Tab. 4, our DiffusionTrack exhibits promissing results

on these VOT benchmarks.

UPDT DiMP TransT TrDiMP Stark DiffusionTrack-b256

[30] [24] [4] [27] [27]

EAO ↑ 27.8 27.4 29.3 30.0 30.3 31.4

Table 4. Comparison on the VOT2020 [15] test set.

Model Encoder Decoder Representation AO

C1 ViT Diff Bounding box 73.8

C2 ViT Diff Point set (2) 74.4

C3 ViT Diff Point set (3) 74.2

Table 5. Ablation on point set and bounding box representation.

AO is evaluated on GOT10k [12] benchmark. Other settings are

kept as same.

Figure 2. Comparisons among anchor-based or anchor-free pre-

diction head and our diffusion-based head. DiffusionTrack gets

rid of the pre-defined priors on all grids of image (a). The predic-

tion network in DiffusionTrack are guided by point groups (b)

4. Additional Discussions

In this section, we present more discussions to analyze our

proposed DiffusionTrack framework, including our decoder

design and employing diffusion model to other trackers.

4.1. On point set representation

As shown in Tab. 5, the point set representation settings

whose point numbers are two and three, achieves better AO

results than axis-aligned bounding box representation. It

shows the effectiveness of our proposed point set presenta-

tion on diffusion models.

4.2. On point set number

In main text, the point number n = 2 has almost the same

performance (74.4 vs.74.2) as n = 3, and further increases



Figure 3. Employing diffusion-style training and inference to a representation anchor-free vision transformer based tracker.

in the number of points (n = 3, 5, 7) leads to degraded per-

formance. We infer that the degeneration may be caused by

a lack of effective supervision for an excessive amount of

points during training. We choose to set point set number

as two for efficiency. Setting point set number as three also

can achieve sota results on multiple tracking benchmarks.

In Fig.5 and Fig. 6, we visualize both the tracking results

of n = 2 and n = 3 settings. We can see the point sets are

gradually focused on the target and filter out the background

clutters progressively.

4.3. On less diffusion layers.

In main text, we find that less diffusion layers can have a

significant faster speed but lower performance. It may at-

tribute to the prediction with refinement-style which more

layers to refine can ease the training burden. We will in-

vestigate on simplified diffusion layer design to achieve the

same results using less layers or iterations.

4.4. On Diffusion decoder and other head designs

We illustrate the difference between our diffusion decoder

and previous popular anchor-based or anchor free predic-

tion head designs. DiffusionTrack gets rid of the pre-

defined priors on all grids of image. The prediction network

in DiffusionTrack are guided by point-set groups. As shown

in Fig. 2, in contrast to the dominating per-pixel prediction

manner which uses pre-defined anchor box on all grids of

image feature, e.g. RPN based or anchor-free based, Dif-

fusionTrack generates object proposals from the whole im-

age and model the instance-level relationship globally to en-

hance the discriminative power.

Model Encoder Decoder Rep. AO

D1 ViT Diffusion layer Point set 74.1

D2 ViT Conv. head Bounding

box

63.2

Table 6. Ablation on apply diffusion-style training and inference

on other tracking pipelines. AO is evaluated on GOT10k [12]

benchmark. Other settings are kept as same.

4.5. Employing diffusion-style training to other
tracking pipeline

In this sub-section, we present our exploratory experiment

to apply diffusion-style training and inference to a represen-

tative transformer based tracker. We select OStrack [28] as

our base tracker, which is also an encoder-decoder structure.

OStrack adopts ViT [8] as encoder and a fully convolutional

network consisting of four stacked Conv-BN-Relu layers.

A center-based prediction which is borrowed from Center-

Net [31], is adopted to predict the target. We concatenate

a heat map and target-aware search features and send it to

the prediction head, which is shown in Fig. 3. The diffusion

step index is also embedded into a feature vector to add into

the concatenated feature map. Then, we follow the train-

ing and inference of diffusion model, which are presented

in the main text, to formulate a new diffusion based track-

ing model. As shown in Tab. 6, traditional tracking pipeline

with simple Conv. head cannot effectively model the dif-

fusion process, which has 9.9% AO performance drop than

our proposed DiffusionTrack with diffusion based decoder.

The element-wise summation of step index directly to the

feature map may not effectively embeds the diffusion step

information. The heat map also cannot effectively model

the process from random state to a high certainty. There-

fore, it fully validates the effectiveness of our diffusion layer



Figure 4. Visualization results of initial target estimations and refined results from six stacked diffusion layers. The number of points is set

to be 2. Yellow bounding box is the final predict result.

based decoder.

5. Additional Visualization Results
In this section, we present more visualization results which

is a supplement to the main text. In Fig. 4, we give more ex-

amples on visualization results of initial target estimations

and refined results from six stacked diffusion layers. Fur-

thermore, in Fig. 5 and Fig. 6, we give the visualization re-

sults of the case whose the number of points is set to 3. We

all can see the point sets are gradually focused on the target

and filter out the background clutters progressively. In the

final, we present the attribute analysis of DiffusionTrack on

LaSOT [9] benchmark in Fig 7 and Fig 8.
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(a)

(b)

Figure 5. Visualization results of initial target estimations and refined results from six stacked diffusion layers. The number of points is set

to be 2 and 3. Yellow bounding box is the final predict result.



(a)

(b)

Figure 6. Visualization results of initial target estimations and refined results from six stacked diffusion layers. The number of points is set

to be 2 and 3. Yellow bounding box is the final predict result.
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Figure 7. Attribute analysis of DiffusioTrack-b256 on LaSOT [9] benchmark-part A.
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Figure 8. Attribute analysis of DiffusioTrack-b256 on LaSOT [9] benchmark-part B.


