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Supplementary Material

Our supplementary materials cover additional analysis,
implementation details, and discussion as below:
(A) Demo Video. We provide a demo video at

https://youtu.be/mFjGSPXmXdA showing multiple
challenging VOS examples (Sec. A).

(B) Implementation details. We explain the detailed
model architectures and the procedures for training
and inference (Sec. B).

(C) Additional ablation studies. This section provides
more analysis and experimental results (Sec. C).

(D) Addition discussion on limitations and future work.
We offer a more detailed discussion of the limitations
and potential future directions (Sec. D).

A. Demo Video

In https://youtu.be/mFjGSPXmXdA, we provide four qual-
itative comparison examples between the baseline models
(AOT [17] and DeAOT [15]) and our RMem, with the object
state changes from both VOST [12] and the Long Videos
dataset [7]. Notably, these examples illustrate four chal-
lenging scenarios: (1) Object ambiguity: objects have sim-
ilar appearances; (2) Slicing: an object is cut into multi-
ple slices; (3) Appearance changes: an object has changed
its shape and appearances, leading to incorrect VOS masks.
(4) Sudden shape changes: the viewpoint changes quickly
and causes variation in shapes of the target object. The four
examples demonstrate that RMem effectively improves the
spatio-temporal reasoning of VOS.

B. Implementation Details

We describe the outline of implementation of AOT [17] and
DeAOT [15] baselines in Sec. 5.2 (main paper). This sec-
tion provides in-depth details of the implementation and the
configuration of RMem.

B.1. Model Architecture

AOT and DeAOT share the common architecture of the
memory-based VOS framework. As conceptualized in
Eqn. 1 (main paper), we disassemble the VOS framework
into the modules of an encoder E(·) encoding images into
feature maps, a decoder D(·) extracting information from
the memory bank, and a segmentation head translating the
output from decoder into masks. Please note that we have
additionally decoupled the segmentation head from the de-
coder for clarity, compared with Eqn. 1 (main paper).

Encoder. Identical to VOST [12], we adopt ResNet-50 [4]
as the encoder, which achieves competitive performance

while efficient enough to operate on Long Videos. The
multiple stages in the ResNet encoder produce 3 levels of
feature maps {F 4, F 8, F 16} with 1/4, 1/8, and 1/16 the res-
olution of the original input image, respectively. Following
the practice of AOT and DeAOT, the deepest feature map
F 16 is the input to the decoder for memory reading, and
{F 4, F 8} are provided to the segmentation head as input
for predicting high-quality masks.

Decoder. AOT and DeAOT utilize a specially-designed
transformer [13] to conduct associative memory reading,
named “Long Short-term Transformer” (LSTT). LSTT
comprises three consecutive transformer layers to enhance
features in the current frame with the memory bank. Adopt-
ing the same notations as Eqn. 1 (main paper), we concep-
tually illustrate this process as Eqn. A:

F
(l+1)
t = Attn(Q = F

(l)
t ,

K = M(l)[F0:t−1],

V = M(l)[F0:t−1]),

(A)

where the superscript (l) denotes the layer index of LSTT,
ranging from 0 to 2. After the above process, We keep
the implementation details identical to the original AOT
and DeAOT. Please refer to them for more detailed con-
figuration. Finally, the output feature F

(3)
t replaces the fea-

ture map F 16 from the encoder not enhanced with spatio-
temporal information.

Segmentation Head. To maintain high-resolution seg-
mentation masks, the segmentation process involves a fea-
ture pyramid network (FPN) [8]. It accepts F (4)

t as the input
feature, uses {F 8, F 16} as shortcut inputs, and up-samples
them via the combination of a convolutional layer and a bi-
linear up-sampling layer.

Temporal Positional Embedding. We introduce tempo-
ral positional embedding (TPE) in Sec. 4.3 (main paper)
to enhance the spatio-temporal reasoning ability of mod-
els. In practice, we initialize end-to-end learnable embed-
dings with the same number to the memory length during
the training time (e.g., 4 in VOST) and the same dimension
to the feature Ft, marking the PE of each place in the mem-
ory bank. For simplicity, the three LSTT layers in Eqn. A
share the same set of TPE.

B.2. Training

Loss Functions. Our training procedure utilizes the same
loss functions as AOT and DeAOT: the combination of
bootstrapped cross-entropy loss and soft Jaccard loss [10].



Both loss terms are averaged 1:1 as the final loss value.

VOST. The training on VOST [12] follows the orig-
inal practice of VOST’s authors, where the models
are fine-tuned on VOST with pretrained weights from
DAVIS2017 [11] and Youtube2019 [14]. As VOST high-
lights spatio-temporal modeling, we follow the authors’
implementation of AOT by using a long sequence length
of 15 frames during training and this accordingly enables
4 frames in the memory bank. It leverages exponential
moving averages (EMA) for parameter updates to stabi-
lize the training process. The whole training process uses
AdamW [6, 9] optimizer, and lasts 20,000 steps with a batch
size of 8, on 4×A40 GPUs. The initial learning rate is
2 × 10−4 and it gradually decays to 2 × 10−5 according
to a polynomial pattern [16]. To avoid overfitting, we set
the learning rate of the encoder as 0.1 of the other compo-
nents. The weight decay is 0.07, which is also identical to
AOT and DeAOT.

Long Videos Dataset. Following the standard prac-
tice [3, 7], we first train the AOT and DeAOT models on the
DAVIS2017 [11] and YoutubeVOS2019 dataset [14], then
conduct inference on the Long Videos dataset [7]. However,
to support the training of positional embedding, we extend
the length of training samples from the original 5 frames
to 9 frames, to support 4 frames in the memory banks dur-
ing the training time. Please note that we also re-train the
baselines under the same setup to ensure a fair comparison.
The training procedure leverages the similar optimization
setting as described above for the VOST dataset, including
the AdamW [6, 9] optimizer, weight decay of 0.07, polyno-
mial learning rate decay [16] from 2 × 10−4 to 2 × 10−5,
0.1 scaling of the encoder learning rate, and EMA param-
eter updates. The only difference from VOST is training
100,000 steps with a batch size of 16, following the imple-
mentation of the original AOT and DeAOT on DAVIS2017
and YoutubeVOS2019 datasets.

B.3. Inference.

VOST. Instead of appending features into memory at
a fixed frequency of 5 frames, the authors of VOST
developed a different strategy than on DAVIS2017 and
YoutubeVOS2019 to address the CUDA memory issue
caused by higher resolution and longer video duration: the
memory bank is bounded by 30 frames and the frequency
of updating memory banks is accordingly L/30, where L
is the length of the video. For our RMem, we follow the
frequency of memory updates set by VOST, but bounds the
size of memory banks to 9 frames, which is significantly
smaller than the original cap of 30 frames. Therefore, our
RMem needs to update the memory banks by removing the
obsolete frames, and we describe the details of memory up-
date in Sec. B.4 below.

Long Videos Dataset. When comparing to the other ap-
proaches on the Long Videos dataset (Table 2, main pa-
per), we primarily rely on the VOS performance evaluated
by XMem [3]. However, we re-implement the baselines of
AOT and DeAOT for a fair comparison with RMem, since
XMem has not released the code for evaluating both meth-
ods. Notably, our re-implementation achieves better perfor-
mance compared to XMem’s reported numbers. In practice,
we determine the frequency of updating memory banks by
L/30 to avoid CUDA memory issues, which is similar to the
inference procedure on VOST. Our RMem shares the same
inference setting as baseline, only restricting the memory
bank size to 8 frames. Then, the memory update strategy is
identical to VOST, as described in Sec. B.4.

B.4. Memory Update

As is described in Sec. 4.2 (main paper), our RMem bal-
ances the relevance and freshness of frames in the memory
bank using our algorithm inspired by UCB [2].

Relevance. As mentioned in Sec. 4.2, we use the atten-
tion scores from the transformers in the decoder (Eqn. 5,
main paper) to reflect the relevance of a memory frame
Rk. Since the LSTT decoder in AOT and DeAOT has three
transformer layers, we intuitively select the attention scores
from the 0-th transformer because it is closest to the original
image embeddings Ft and memory features Mt (ablation in
Sec. C.3). To stabilize the relevance term and avoid fluctua-
tions, we further apply the moving average technique to the
relevance term. Suppose R

′

k denotes the relevance values
of a memory frame k derived from the latest timestamp, the
consequent relevance term Rk is updated via:

Rk ←− (1− λ)R
′

k + λRk, (B)
where we set λ = 0.8 for both VOST and the Long Videos
dataset. As we have noticed, using moving average for sta-
bilization is a common technique for VOS on long videos,
such as in AFB-URR [7].

Freshness. To balance the numerical scales of the rele-
vance and freshness terms, we slightly modify Eqn. 4 (main
paper) as below,

Oj = Rj + α

√
log T

tj +B
, (C)

where B smooths the numerical ranges of the freshness
term, and α controls the individual contribution of relevance
and freshness. In practice, we set B = 8 and α = 1.5 for
both VOST and the Long Videos dataset. Detailed ablation
studies on the values of α are illustrated in Sec. C.2.



C. Supplemental Ablation Studies

C.1. Memory Update on the Long Videos Dataset

We analyze the memory update strategies on the Long
Videos dataset [7] using our AOT baseline in Table A, in
addition to the analysis on VOST [12] (Table 4, main pa-
per). (1) Notably, we observe consistent improvement from
our UCB-inspired memory update strategy combining both
relevance and freshness of frames in the memory. (2) Sim-
ilar to the results on VOST, our baseline of removing the
1-st frame in the memory has competitive performance but
is inferior to our final UCB-inspired strategy. (3) The anal-
ysis in Table A also reveals several intriguing differences
between the Long Videos dataset and VOST. Specifically,
VOST highly relies on the relevance of frames and the re-
liable information from the 0-th frames because of its com-
plexity in scenarios, while the Long Videos dataset high-
lights the utility of freshness of frames as a consequence of
extremely long video duration.

Method Variants J&F J F

Remove

0-th 88.1 86.3 89.9
1-st 88.3 86.6 90.1
Middle 86.6 85.5 87.9
Latest 85.4 84.1 86.7
Random 87.7 86.6 88.9

UCB Relev 86.9 85.4 88.3
Relev + Fresh 89.5 87.8 91.2

Table A. Ablation study of different memory updating strategies
on the Long Videos dataset, in addition to VOST (Table 4, main
paper). We analyze deleting a frame in the memory based on
heuristics (“Remove”) or guided by the relevance and freshness of
the UCB algorithm (“UCB”). Our final memory updating strategy
using both relevance and freshness achieves the best performance.

C.2. Balancing Relevance and Freshness

As mentioned in Sec. 4.2 (main paper) and Sec. B.4, we
balance relevance and freshness when updating the mem-
ory banks via Eqn. C. Fig. A analyzes the performance un-
der different α values on both VOST and the Long Videos
dataset. Specifically, a larger α denotes relying more on the
freshness term. A proper α is essential for the UCB-inspired
algorithm to improve memory update for both VOST and
the Long Videos dataset, and we empirically select α = 1.5
because it generalizes better to both of the datasets. Inter-
estingly, Fig. A also reveals the difference between VOST
and the Long Videos dataset: VOST has more complex
scenarios and highlights the utility of relevance, while the
long video dataset relies more on freshness due to its ex-
tremely long video duration. Nonetheless, our final α = 1.5
achieves proper balance for both domains.
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Figure A. Analysis on relevance and freshness for memory up-
date, on VOST and the Long Videos dataset. The performance
varies with different α values (from Eqn. C), and it illustrates the
importance of the trade-off between relevance and freshness.

C.3. Relevance Calculation

Our relevance term for memory update uses attention scores
to reflect the importance of a frame, similar to previous
works [3, 7]. However, LSTT has three transformer layers
and enables two intuitive strategies of relevance calculation:
(1) directly using the 0-th layer; and (2) computing the av-
erage attention scores of all the transformer layers. Table
B compares these two strategies on VOST and the Long
Videos dataset. We observe that using the 0-th layer for rel-
evance calculation has an advantage in most of the scenar-
ios. We conjecture that the 0-th transformer has the largest
fidelity to the features of images and memory banks. There-
fore, our RMem empirically selects the 0-th transformer for
relevance, as described in Sec. B.4.

Methods VOST Long Video
Jtr J J&F J F

AOT + RMem (0-th) 39.8 50.5 90.3 88.5 92.1
AOT + RMem (Mean) 39.6 50.3 89.8 88.2 91.5

DeAOT + RMem (0-th) 40.4 51.8 91.5 89.8 93.3
DeAOT + RMem (Mean) 40.6 52.0 90.3 88.7 92.0

Table B. Analysis on the relevance calculation. “0-th” and “Mean”
denote using the attention scores from the 0-th transformer layer
or the average attention scores from all of the three layers.

C.4. Analysis on Training-Inference alignment

As discussed in Sec. 4.3 (main paper), the purpose of
temporal positional embedding is to align the gap between
training and inference, as VOS models are trained on short
videos but inferencing on unlimited videos. However, it



is also valuable to explore whether it is another approach
to address this training-inference gap. We compared our
Restricted Memory (RM) with 2 approaches: (1) Longer
Memory (LM): train the model with longer video clips so
that the model can fit better on a larger memory bank. (2)
More Steps (MS): train the model with more steps. As is
shown in Table C, LM certainly is effective in mitigating
the training-inference gap, but it is still worse than our RM.
MS exhibits overfitting with too many training steps, thus
not capable of addressing this issue. However, MS can still
gain improvement through our RM, proving our method’s
effectiveness from another perspective.

Model Train Mem Len Step URM RM
Jtr J Jtr J

AOT 4 20k 37.0 49.2 38.6 50.2

AOT-LM 6 20k 38.2 49.9 39.8 50.1

AOT-MS 4 40k 36.6 48.6 37.8 48.0

Table C. Analysis of 2 approaches to address training-inference
gap. “URM” for unrstricted memory and “RM” for restricted
memory. Our “RM” is still the best way to align training and in-
ference.

C.5. Analysis on LVOS

Since the Long Videos dataset only features 3 testing
videos, which is not able to fully demonstrate the effective-
ness of our method, we further report our model’s perfor-
mance on LVOS dataset [5], which contains 50 long videos
in the validation set.

Methods J&F J F
AOT 63.6 57.6 69.5
AOT + TPE 64.5 58.9 70.0
AOT + RMem 66.1 60.5 71.7

Table D. Results on the validation set of LVOS dataset.

As is shown in Table D, our RMem still holds the high-
est performance compared to the AOT baseline. Besides,
our TPE (temporal positional embedding) exhibits consid-
erable improvements, which proves that TPE is effective in
aligning the training-inference gap, given that the average
duration in LVOS is much longer than other video datasets.

C.6. Analysis on YoutubeVOS2019

Our study concentrates on improving the VOS accuracy
for long and/or complex VOS scenarios. Meanwhile, we
also supplement with analysis on shorter, simpler bench-
marks. As indicated in Table 6 of the main paper, our
RMem demonstrates comparable performance to baselines
without RMem on DAVIS2017 [11], with a notable increase
in efficiency. This result underlines the adaptability of our
approach across different regimes.

Further analysis is conducted in the section using the
YoutubeVOS2019 [14] benchmark, with shorter video du-
ration and easier scenarios. In Table E, we evaluate two set-
tings: (1) the influence of only restricting the memory bank
sizes; and (2) the effect of the full RMem with temporal
positional embedding. Table E (rows 1 and 2) shows that:
by limiting the memory banks with the original checkpoint
provided by DeAOT’s authors, we maintain the same VOS
quality. This finding suggests that constraining the memory
banks is a regime-independent strategy.

A key aspect of our RMem is temporal positional em-
bedding (TPE), which necessitates end-to-end model train-
ing on extended sequences. As in Sec. B.2, we increase the
training sequence length from 5 frames to 9 frames without
tuning the hyper-parameters, ensuring a 4-frame memory
bank during the training stage. However, this introduces op-
timization challenges, as reflected in the decreased DeAOT
performance with longer training clips (Table E, rows 1 and
3). Under such a setup and fair comparison, our full RMem
has maintained comparable VOS quality compared with the
baseline (rows 3 and 4). In conclusion, our RMem is also
applicable for YoutubeVOS2019, although tuning the op-
timal hyper-parameters for training with longer sequence
lengths is future work.

Index Method G Js Ju Fs Fu

1 DeAOT 85.9 84.6 89.4 80.8 88.9
2 DeAOT + RMem 85.9 84.6 89.4 80.8 88.9

3 DeAOTΨ 85.6 84.8 80.0 89.7 88.0
4 DeAOTΨ + RMem 85.5 84.6 79.8 89.4 88.2

Table E. Analysis on YoutubeVOS2019 shows that, although not
the primary focus of this paper, our RMem is also applicable for
YoutubeVOS2019 with comparable performance with baselines.
We first apply restricted memory banks to the original DeAOT
checkpoint (rows 1 and 2). To enable temporal positional em-
bedding (TPE), we train DeAOT under a longer sequence length
and denote such models with “Ψ” (rows 3 and 4). The sub-
scripts “s” and “u” denote the “seen” and “unseen” subsets of
YoutubeVOS2019, respectively.

D. Additional Discussion on Limitations and
Future Work

We briefly outlined the limitations of our study in Sec. 6 due
to space limits. This section elaborates on more details.

As mentioned in Sec. 6, we prioritize the analysis of
memory banks, and RMem is designed as a straightforward
instantiation to demonstrate our insight. For this purpose,
our study primarily engages with state-of-the-art methods
like AOT [17] and DeAOT [15]. This choice is grounded,
especially when common VOS studies are built upon a sin-
gle or few preceding approaches due to the complexity
of the framework, such as XMem [3], HODOR [1], and
DeAOT [15]. One potential limitation could be that our



RMem might implicitly depend on the transformer mech-
anisms and the affinity calculation in self-attention, which
are adopted in AOT and DeAOT. These mechanisms na-
tively support the temporal positional embedding and align
with our key motivation of focusing the attention scores on
relevant frames (Sec. 3 and Fig. 2, main paper). While
future endeavors could explore adapting RMem for var-
ious VOS methods beyond the ones using transformers,
near-future VOS methods will likely continue to employ a
transformer-based framework, making our current RMem
design compatible with them.

Another aspect mentioned in Sec. 6 is the potential for
enhancing RMem with more advanced techniques. While
the current simplicity of our approach effectively demon-
strates our core insights into managing memory bank ca-
pacities, we acknowledge that it can benefit from a more
sophisticated design. As especially pointed out in Sec. 6,
XMem [3] exhibits an intricate design for efficiently ex-
panding memory banks. Though more complex than our
current method of simply bounding memory bank sizes,
such advancements could offer greater flexibility and po-
tentially improve VOS.

Lastly, as discussed in Sec. 6, another option for en-
hancement lies in improving the decoding capabilities of
the VOS framework. Our study maintains the original de-
sign of existing methods for a fair comparison, yet future
research could explore scaling or modifying VOS architec-
tures to further mitigate the challenges posed by expanding
memory banks.
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