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Supplementary Material

The overall structure of the supplementary material is listed

as follows:

▷ Sec. A: Implementation details of our model.

▷ Sec. B: Metric details for evaluation.

▷ Sec. C: Performance on Argoverse 2 leaderboard.

▷ Sec. D: Comparison with other refinement methods.

▷ Sec. E: Ablation studies of all backbones.

▷ Sec. F: The quality score distribution of all methods.

▷ Sec. G: Visualization results of refinement.

A. Implementation Details

A.1. Backbones

We apply our SmartRefine to six classic and state-of-the-

art motion prediction backbones: HiVT [39], Prophnet [33],

mmTransformer [14], DenseTNT [10], QCNet [40], and

QCNet (no refine) [40]. For implementation, we repro-

duce Prophnet since it is not open-source, and utilize the

open-source codes for all other backbones. In the rest of

this section, we introduce the implementation details of our

SmartRefine.

A.2. Compressor

We use an MLP network to reduce the hidden dimension of

the trajectory embeddings from backbones. The following

hyperparameters are used:

• Number of layers: 2

• Input size: the original hidden size set by the trajectory

generation backbone

• Output size: 64

A.3. Context Retrieve and Encoding

During refinement, we first select anchors along the trajec-

tories, which are used to retrieve contexts. We represent

each anchor’s retrieval range as Ri,v = F(i) · v, as men-

tioned in Sec. 3.2.1. In practice: 1) F(i) = β( 1
2
)i−1, and

we set radius decay constant β as 0.8; 2) the average speed v

around one anchor is calculated based on the speed when the

agent passes through the anchor’s corresponding trajectory

segment.

When encoding the context, the early fusion strategy [15]

is utilized. Specifically, for each context, we first use MLP

layers to encode the context components (positions, seman-

tic information, and distance to the anchor) separately, then

add them together, and then apply MLP layers to encode the

added embedding. We use the following model hyperparam-

eters:

Rank Method minFDE ↓ minADE ↓ MR ↓

1 SEPT-iDLab (SEPT)* 1.15 0.61 0.14

2 GACRND-XLAB (XPredFormer)* 1.20 0.62 0.15

3 QCNet-AV2 (QCNet) 1.19 0.62 0.14

4 MTC (MTC)* 1.17 0.61 0.14

5 Mingkun Wang 1.19 0.62 0.14

6 AnonNet (AnonNet)* 1.23 0.63 0.15

7 ls (TraceBack)* 1.20 0.64 0.14

8 SmartRefine (ours) 1.23 0.63 0.15

- QCNet (no ensemble) 1.24 0.64 0.15

- GANet (published version) 1.35 0.73 0.17

Table 7. Argoverse 2 leaderboard (single agent track) at the time

of the paper submission. Unpublished works are marked with the

symbol “*”. Our SmartRefine with QCNet as trajectory generation

backbone ranked #8 on the leaderboard. Methods before ours are all

unpublished except two methods: 1) The #3 method is the ensemble

version of QCNet, while our method does not utilize ensemble. For

a fair comparison, our method outperforms the ensemble-free ver-

sion of QCNet (as marked in the second last row). 2) The #5 method

is linked to GANet [32], which was published before. However, the

performance in the original published GANet paper (as marked in

the last row) is much poorer than that of the #5 method. We suppose

the current #5 performance is obtained by the ensemble version of

GANet or an unpublished extended version of GANet. Thus our

method outperforms all published ensemble-free works on the Ar-

goverse 2 leaderboard (single agent track) at the time of the paper

submission.

• Number of Anchors: 2 for Argoverse and 4 for Argov-

erse 2

• Number of encoder layers: 2

• Input size of each context: 2 for (x,y) positions and 1

for semantic information

• Hidden size: 64

• Fusion operator: “add”

• Number of fusion layers: 2

A.4. Cross Attention for Refinement

We utilize a multi-head attention module to refine each

trajectory segment. It takes the trajectory embeddings as

queries and the context encodings as keys/values. We use

the following model hyperparameters:

• Number of attention layers: 1

• Hidden size: 64

• Number of attention heads: 8

• Dropout: 0.1

• Activation: ReLU

A.5. Decoder

Our module has three decoders: trajectory decoder, proba-

bility decoder, and quality decoder. We represent them all as



Backbones

Datasets
Metrics

Different Ideologies of Refinement Techniques

no ref DCMS1 QCNet1 R-Pred1 MTRM OursA

HiVT

Argo

minFDE 0.969 0.958 0.933 0.929 0.915 0.911

Latency 54±4.0 55±4.4 64±5.1 62±5.9 92±9.4 67±8.4

Prophnet

Argo

minFDE 1.004 0.996 0.984 0.981 0.968 0.967

Latency 59±1.7 60±2.4 68±3.2 65±3.1 88±5.9 71±6.2

mmTransformer

Argo

minFDE 1.081 1.066 1.048 1.045 1.022 1.023

Latency 15±4.8 16±5.5 22±5.6 21±5.5 51±8.4 27±9.7

DenseTNT

Argo 2

minFDE 1.624 1.601 1.563 1.576 1.553 1.553

Latency 1,075±199 1,076±199 1,133±217 1,085±209 1,125±213 1,099±212

QCNet (no ref)

Argo 2

minFDE 1.304 1.293 1.253 1.274 1.256 1.258

Latency 338±53 339±53 392±54 348±55 387±62 363±67

Table 8. Comparison of refinement methods. 1/M/A denotes one-iteration, multi-iteration, and adaptive-iteration refinement methods

respectively. Our method which utilizes adaptive refinement achieves the best trade-off in minFDE and latency.

MLP networks. We use the following model hyperparame-

ters:

• Number of layers: 2

• Hidden size: 64

• Output size: 2·Tf for trajectory decoder, and 1 for prob-

ability/quality decoder.

A.6. Optimization

We train our model to minimize the negative log-likelihood

of the ground truth trajectory. The training hyperparameters

are set as follows:

• Loss balance constant α in Sec. 3.3: 0.01

• Number of refinement iteration I: 5

• Number of training epochs: 32

• Batch size: 8 for one single GPU and we use 8 GPUs

• Learning rate schedule: Cosine

• Initial learning rate: 0.001

• Optimizer: AdamW

• Weight decay: 0.0001

B. Evaluation Details

B.1. Standard Metric

minADE & minFDE. minADE measures the Euclidean

distance error averaged over all timesteps for the closest

prediction, relative to ground truth. In contrast, minFDE

considers only the distance error at the final timestep.

Miss Rate. Miss rate is a measure of what fraction of sce-

narios fail to generate any predictions within the lateral and

longitudinal error thresholds, relative to the ground truth fu-

ture. In Argoverse and Argoverse 2 dataset, the threshold is

set to 2.0 by default.

B.2. Additional Metric

#Param. Analysis. #Param. is the total number of model

parameters. It reveals the model’s memory cost. We count

the model’s parameters via PyTorch Lightning.

Flops Analysis. Flops specifically refer to the number of

floating-point operations when running the model, such

as the matrix multiplications and activations. Flops are

often used to measure the computational cost or complexity

of a model. We measure Flops of model forward with

batch size=1 during inference so gradient calculations are

not considered.

Latency Analysis. Latency is the time required to execute

the model, which is generally used in the context of mea-

suring computation efficiency. To simulate realistic settings

where multiple agents exist, we measure the latency of the

model with batch size=32 over Argoverse / Argoveres 2 val

set.

C. Performance on Argoverse 2 Leaderboard

In Table 7, we show the details of how our SmartRefine per-

forms on the Argoverse 2 leaderboard (single agent track).

At the time of the paper submission, our SmartRefine with

QCNet as trajectory generation backbone ranked #8 on the

leaderboard. Methods before ours are all unpublished except

two methods:

• The #3 method QCNet is the ensemble version of QC-

Net, while our method does not utilize ensemble. For a

fair comparison, our method outperforms the ensemble-

free version of QCNet (as marked in the second last row).

• The #5 method is linked to GANet [32], which was pub-

lished before. However, the performance in the original

published GANet paper (as marked in the last row) is much

poorer than that of the #5 method. We suppose the cur-
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Figure 4. Comparison between the fixed and adaptive number of refinement iterations, when we apply our SmartRefine on all six con-

sidered backbones respectively (on val set of Argoverse and Argoverse 2). The blue curve represents fixed refinement iterations (for both

training and inference). Other curves denote adaptive refinement iterations with different quality score threshold q̄ during inference time

(5 refinement iterations are utilized during training). For each threshold, we ablate different limits for maximum refinement iteration I ′,

resulting in 5 points for each curve (refer to Algorithm 1 for detailed descriptions of q̄ and I ′). Two observations: 1) on HiVT, ProphNet,

DenseTNT, and QCNet (no ref), our adaptive refinement strategy outperforms the fixed refinement strategy given any threshold q̄. 2) on

mmTransformer, and QCNet, our adaptive refinement strategy outperforms the fixed refinement strategy when we set a higher threshold q̄

(0.4, 0.5, 0.6) when we decide whether another refinement iteration is needed.

rent #5 performance is obtained by the ensemble version

of GANet or an unpublished extended version of GANet.

Thus our method outperforms all published ensemble-free

works on the Argoverse 2 leaderboard (single agent track) at

the time of the paper submission.

D. Comparison with other refinement methods

In the refinement methods listed in Table 1, DCMS and R-

Pred are not open-sourced, and MTR is intended for Waymo

dataset. For a fair and convenient comparison, we follow

their ideologies to reproduce them under our framework. As

in Table 8, DCMS has the worst minFDE but the best latency

since it doesn’t use any contexts. QCNet performs well but

has the largest latency in Argoverse 2 with big maps, as it

unselectively utilizes all the context. R-Pred selectively uses

context along the whole trajectory and achieves good perfor-

mance compared to other one-iteration methods (DCMS and

QCNet). MTR as a multi-iteration refinement method out-

performs one-iteration methods but has higher latency. Our

method which utilizes adaptive refinement achieves the best

trade-off in minFDE and latency.

E. Ablation Studies with All Backbones

In this main paper, we only reported ablation studies on cer-

tain backbones due to the page limit. Here we show the ab-

lation studies on all backbones.

E.1. Refinement Iterations

In Fig. 2 of the main paper, we compared the fixed refinement

strategy and our proposed adaptive strategy on two back-

bones: HiVT (Argoverse), and QCNet no refine (Argoverse

2). Here we show the results of our SmartRefine with all

six considered backbones, shown in Fig. 4. Specifically, the

blue curve denotes refinement with a fixed number of itera-

tions (for both training and inference). Other curves denote

adaptive refinement iterations with different quality score

threshold q̄ during inference (5 refinement iterations are uti-

lized during training). For each threshold, we ablate differ-

ent limits for maximum refinement iteration I ′, resulting in

5 points for each curve. Readers are referred to Algorithm 1

for detailed descriptions of q̄ and I ′. As shown in Fig. 4,

the performance of all backbones can be improved by refine-

ment. When we compare our adaptive strategy with the fixed

strategy: 1) on HiVT, ProphNet, DenseTNT, and QCNet (no



#Anchor numbers

HiVT w/ Ours

Argoverse

minFDE #Param.

1 0.928 134K

2 0.911 207K

3 0.911 280K

5 0.915 433K

6 0.916 509K

#Anchor numbers

ProphNet w/ Ours

Argoverse

minFDE #Param.

1 0.978 143K

2 0.967 216K

3 0.967 290K

5 0.966 442K

6 0.967 518K

#Anchor numbers

mmTransformer w/ Ours

Argoverse

minFDE #Param.

1 1.035 143K

2 1.023 216K

3 1.021 290K

5 1.020 442K

6 1.018 518K

#Anchor numbers

DenseTNT w/ Ours

Argoverse

minFDE #Param.

1 1.582 176K

3 1.555 327K

4 1.553 406K

5 1.552 486K

6 1.553 566K

#Anchor numbers

QCNet (no ref) w/ Ours

Argoverse

minFDE #Param.

1 1.282 142K

3 1.260 284K

4 1.258 359K

5 1.258 435K

6 1.259 511K

#Anchor numbers

QCNet w/ Ours

Argoverse

minFDE #Param.

1 1.245 142K

3 1.242 284K

4 1.240 359K

5 1.242 435K

6 1.241 511K

Table 9. Ablation study on the number of anchors, when we apply our SmartRefine on all six considered backbones respectively (on val set

of Argoverse and Argoverse 2). We can see a common trend that increasing the anchor number reduces the minFDE. However, excessively

increasing the number of anchors is ineffective, as it brings much larger model parameters with the same or slightly worse accuracy. Also,

the two datasets desire different numbers of anchors because they consider different lengths of the prediction horizon. Thus we set the

anchor number as 2 for Argoverse (marked grey), and 4 for Argoverse 2 experiments (marked grey). The experiments reported in the main

paper are based on these two settings.

ref), our adaptive refinement strategy outperforms the fixed

refinement strategy basically given any threshold q̄. 2) on

mmTransformer, and QCNet, our adaptive refinement strat-

egy outperforms the fixed refinement strategy when we set

a higher threshold q̄ (0.4, 0.5, 0.6) when we decide whether

another refinement iteration is needed.

E.2. Anchor Numbers

The results are shown in Table 9. We can see a common trend

that increasing the anchor number reduces the minFDE.

However, excessively increasing the number of anchors is

ineffective, as it brings much larger model parameters with

the same or slightly worse accuracy. Also, the two datasets

desire different numbers of anchors because they consider

different lengths of the prediction horizon. Thus we set the

anchor number as 2 for Argoverse (marked grey), and 4 for

Argoverse 2 (marked grey). The experiments reported in the

main paper are based on these two settings.

E.3. Context Representation

The results are shown in Table 10. We can see our adaptive

anchor-centric encoding effectively outperforms the fixed

agent-centric context encoding, on all backbones.

E.4. Retrieval Radius

The results are shown in Table 11. Common observations

can be drawn: 1) the fixed retrieval radius from 50 to 2 can

be sub-optimal, as a large retrieval radius might lead to re-

dundant or irrelevant context information, while a small ra-

dius might not provide sufficient context for refinement. 2)

our SmartRefine achieves lower prediction error and Flops,

by adapting the radius to each agent’s velocity, and decay-

ing the radius with the number of refinement iterations (see

details in Sec 3.2.1). Here we compare two strategies for ra-

dius decay: linear decay and exponential decay. We adopt

exponential decay as it outperforms linear decay.

F. Quality Score of All Backbones

The quality score distribution over multiple refinement iter-

ations, when we apply our SmartRefine on all six consid-

ered backbones respectively. Results are shown in Fig. 11.

Specifically, for each predicted trajectory, we measure its ac-

curacy using the quality score. We will track how the quality

score changes along the multi-iteration refinements.

Common observations on the six backbones can be drawn: 1)

not every trajectory benefits from refinement; 2) the overall

performance becomes better after refinement. These results

demonstrate the necessity of adaptive refinement.

G. Visualization of Refinement

As shown in Fig. 12, Fig. 13, Fig. 14, Fig. 15 and Fig. 16,

we show the visualization results of the predicted trajecto-

ries by our method, before and after refinement. These re-

sults demonstrate how our method can refine the trajectory

to be closer to ground truth and be more compliant to the

road context.



Context Encoding

HiVT w/ Ours

Argoverse

minFDE

Agent-Centric 0.941

Anchor-Centric 0.911

Context Encoding

ProphNet w/ Ours

Argoverse

minFDE

Agent-Centric 0.988

Anchor-Centric 0.967

Context Encoding

mmTransformer w/ Ours

Argoverse

minFDE

Agent-Centric 1.064

Anchor-Centric 1.023

Context Encoding

DenseTNT w/ Ours

Argoverse

minFDE

Agent-Centric 1.589

Anchor-Centric 1.553

Context Encoding

QCNet (no ref) w/ Ours

Argoverse

minFDE

Agent-Centric 1.276

Anchor-Centric 1.258

Context Encoding

QCNet w/ Ours

Argoverse

minFDE

Agent-Centric 1.249

Anchor-Centric 1.240

Table 10. Ablation study on how the contexts are encoded, when we apply our SmartRefine on all six considered backbones respectively

(on val set of Argoverse and Argoverse 2). We can see our adaptive anchor-centric encoding effectively outperforms the fixed agent-centric

context encoding, on all backbones.

HiVT w/ Ours (Argoverse)

Retrieval Radius minFDE Flops (M)

Fixed

Radius

50 0.926 2,297

20 0.923 722

10 0.921 325

2 0.930 58

Adaptive

Radius

Rmax=10, Rmin=2, linear 0.911 245

Rmax=10, Rmin=2, exp 0.911 130

ProphNet w/ Ours (Argoverse)

Retrieval Radius minFDE Flops (M)

Fixed

Radius

50 0.976 2,181

20 0.974 621

10 0.975 332

2 0.980 41

Adaptive

Radius

Rmax=10, Rmin=2, linear 0.970 140

Rmax=10, Rmin=2, exp 0.967 132

mmTransformer w/ Ours (Argoverse)

Retrieval Radius minFDE Flops (M)

Fixed

Radius

50 1.042 1,466

20 1.030 468

10 1.031 193

2 1.041 30

Adaptive

Radius

Rmax=10, Rmin=2, linear 1.028 156

Rmax=10, Rmin=2, exp 1.023 101

DenseTNT w/ Ours (Argoverse 2)

Retrieval Radius minFDE Flops (M)

Fixed

Radius

50 1.566 4,018

20 1.556 1,476

10 1.558 839

2 1.561 181

Adaptive

Radius

Rmax=10, Rmin=2, linear 1.555 541

Rmax=10, Rmin=2, exp 1.553 396

QCNet (no ref) w/ Ours (Argoverse 2)

Retrieval Radius minFDE Flops (M)

Fixed

Radius

50 1.266 4,337

20 1.258 1,691

10 1.261 995

2 1.270 199

Adaptive

Radius

Rmax=10, Rmin=2, linear 1.258 577

Rmax=10, Rmin=2, exp 1.258 408

QCNet w/ Ours (Argoverse 2)

Retrieval Radius minFDE Flops (M)

Fixed

Radius

50 1.244 4,560

20 1.245 1,756

10 1.243 869

2 1.246 186

Adaptive

Radius

Rmax=10, Rmin=2, linear 1.241 594

Rmax=10, Rmin=2, exp 1.240 410

Table 11. Ablation study on the fixed and adaptive radius for context retrieval, when we apply our SmartRefine on all six considered

backbones respectively (on val set of Argoverse and Argoverse 2). Common observations can be drawn: 1) the fixed retrieval radius from

50 to 2 can be sub-optimal, as a large retrieval radius might lead to redundant or irrelevant context information, while a small radius might

not provide sufficient context for refinement. 2) our SmartRefine achieves lower accuracy and Flops, by adapting the radius to each agent’s

velocity, and decaying the radius with the number of refinement iterations (see details in Sec 3.2.1). Here we compare two strategies for

radius decay: linear decay and exponential decay. We adopt exponential decay as it outperforms linear decay.
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Figure 11. The quality score distribution over multiple refinement iterations, when we apply our SmartRefine on all six considered

backbones respectively (Argoverse and Argoverse 2 training set). Specifically, for each predicted trajectory, we measure its accuracy using

the quality score. We will track how the quality score changes along the multi-iteration refinements. Common observations on the six

backbones can be drawn: 1) not every trajectory benefits from refinement; 2) the overall performance becomes better after refinement.

These results demonstrate the necessity of adaptive refinement.
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Figure 12. Visualization results. The dark blue arrows are multi-nodal predictions of the agent by model and the pink arrow is the ground

truth future trajectory respectively. The trajectory (turn right) gets closer to the ground truth after refinement.
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Figure 13. Visualization results. The dark blue arrows are multi-nodal predictions of the agent by model and the pink arrow is the ground

truth future trajectory respectively. The trajectory closest to the ground truth gets closer after refinement.
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Figure 14. Visualization results. The dark blue arrows are multi-nodal predictions of the agent by model and the pink arrow is the ground

truth future trajectory respectively. The shortest trajectory gets more aligned toward the ground truth direction, and the trajectory closest

to the ground truth gets closer after refinement.
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Figure 15. Visualization results. The dark blue arrows are multi-nodal predictions of the agent by model and the pink arrow is the ground

truth future trajectory respectively. All trajectories get closer to the ground truth after refinement.



Before Refinement Refinement Iter: 1

Refinement Iter: 3 Refinement Iter: 5

Figure 16. Visualization results when the future trajectory of a pedestrian is predicted. The dark blue arrows are multi-nodal predictions of

the agent by model and the pink arrow is the ground truth future trajectory respectively. All trajectories get closer to the ground truth after

refinement.
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