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We provide further training details (Sec. A) and addi-
tional qualitative results of our model (Sec. B).

A. Training hyperparameters

All our experiments are conducted using the Scenic li-
brary [3] and JAX [1]. With the GIT [9] architecture, we
first pretrain on the WebLI [2] dataset for general image
captioning. WebLI [2] contains 100M image-text pairs de-
rived from alt-text from the internet. The image encoder
is initialized from CLIP-L [7], and the language decoder is
randomly initialized. During pretraining, we use the stan-
dard label-smoothed (factor 0.1) cross-entropy loss follow-
ing GIT [9] and train for 10 epochs. We use the Adam [5]
optimizer, with no weight decay. The learning rate is set
to 5× 10−5 with a batch-size of 1024, with a cosine decay
schedule. Following GIT [9], we use 0.2× lower learning
rate for the image encoder.

When finetuning on dense-video captioning datasets [4,
6, 12], we freeze the image encoder. We again use the
Adam [5] optimizer with 0 weight decay. We train for 20
epochs with batch size of 32, and use a learning rate of
10−5, dropped by 10× at the 16th epoch.

With Vid2Seq [10], we take the publicly released
pretrained checkpoint1, which is pretrained on the YT-
Temporal dataset [11] with a denoising and a captioning
objective [10]. When finetuning on dense-video captioning
datasets [4, 6, 12], we follow their official training parame-
ters. Specifically, we freeze the image encoder and pool the
image tokens among the spatial dimensions to get one token
per frame. The T5 [8] decoder uses a dropout rate of 0.1.
We again use Adam [5] optimizer with 0 weight decay. We
train for 40 epochs with batch-size 32, and use a learning
rate of 3× 10−4 with a cosine decay schedule.

For all models, we follow the standard protocol to use
beam-search decoding, with a beam size of 4 and a brevity
penalty of 0.6 [8]. We also emphasize that wherever appli-
cable, all base architectures and backbones are consistent
between comparisons and baselines.

*Equal contribution. {zhouxy, aarnab}@google.com
1https : / / github . com / google - research / scenic /

tree/main/scenic/projects/vid2seq

B. Further qualitative results
We provide qualitative results of our model and the ground
truth on ActivityNet in folder results. We also in-
clude a “results.html” to display the videos in a web
browser. Our model provides accurate captions and local-
izations across a diverse range of events.
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