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Supplementary Material

In this supplementary material, we provide more details
to complement the manuscript, including the implementa-
tion details in Sec. 7 and additional experimental results in
Sec. 8.

7. Implementation Details
7.1. The detailed architecture of the decoder
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Figure 7. Details of decoder architecture used in our framework.

In the main paper, we propose a unified framework to
generate semantic predictions by matching the class embed-
dings and visual embeddings in a vanilla transformer-based
decoder as shown in Fig. 2 of the main paper. In this sec-
tion, we provide more details of the decoder architecture as
presented in Fig. 7.

Specifically, there are two inputs for the transformer-
based decoder: the one input is [P,R] ∈ RC×(2∗d), where
P ∈ RC×d and R ∈ RC×d are class-wise prototype
embedding and our proposed relationship descriptor (RD)
embeddings respectively, and d is the feature dimension.
The other input is H = [h1,h2, ...,hN ] ∈ RN×d, where
N is the number of patch tokens of an image and hj denot-
ing the jth patch. We can apply linear layers {ψq, ψk, ψv}
to generate Q, K, and V for query, key and value embed-
dings, respectively

Q = ψq(ϕ([P,R])) ∈ RC×d, (7)

K = ψk(φ(H)) ∈ RN×d, (8)

V = ψv(φ(H)) ∈ RN×d (9)

where {ϕ, φ} are the projection layers described in Sec. 4.1
and Eq. 3 of the main paper. The semantic masks could
be obtained by calculating the scaled dot-product attention
which is the intermediate product of the multi-head atten-
tion model (MHA):

Masks =
QKT

√
dk
∈ RC×N . (10)

where dk is the dimension of the keys as a scaling factor.
The final semantic segmentation results are obtained by ap-
plying Argmax operation on the class dimension of Masks
logits.

7.2. Details of applying our trained GFSS model to
(binary) FSS setting

In the main paper, we have successfully demonstrated the
application of our optimized model, originally developed
for the Generalized Few-Shot Segmentation (GFSS) setting,
to the binary Few-Shot Segmentation (FSS) context. This
was detailed in Section 5.5 and illustrated in Table 3 of the
main paper. In this section, we offer further insights into
the methods and processes we employed to accomplish this.
Specifically, the binary FSS setting requires the model to
segment out the target class objects and treat all other pixels
as non-target (background) for a given testing image.

Therefore, we first adapt our optimized model to the
FSS task by creating the novel class prototype from the tar-
get class objects in the support set and accumulating non-
target-region features of the support set into the existing
background class prototype. Moreover, since our optimized
model has accommodated the knowledge for base classes,
we propose to reinterpret predictions for these base classes
as background class decisions in the binary FSS setting.
This straightforward yet effective modification enabled our
model to deliver remarkable results in the binary FSS set-
ting. The complete results on both PASCAL-5i and COCO-
20i datasets are provided in Tab. 7.

7.3. Pseudo code of our approach

For better comprehension, the complete pseudo code de-
tailing the training and inference processes of our unified
framework is presented in Algorithm 1.



Algorithm 1: Pseudo code of our framework
// Train on base & background classes

CB

Input: Dataset DB ; Encoder with learnable prompts E,
Decoder F , Relationship Descriptor Generator G;

Input: Initialized base class prototypes PB .

1 for sampled minibatch {I,Mgt}bsn from DB do
2 hcls,H = E(I);

// Generate Relationship Descriptors
3 R = G(PB ,H);
4 M = sigmoid(F ([PB ,R],H));

// Adamw update: E,F
5 Updata parameters via Lmask(M,Mgt);
6 for class c(c ∈ CB) in {Mgt}bsn do

// Momentum update: PB

7 Pc = 1∑
i,j(M

gt)ci,j

∑
i,j(M

gt)ci,jH
c
i,j

Pc
B ← (1− η) ∗Pc + η ∗Pc

B

8 end
9 end

// Register novel classes CN,
CB ∩ CN = ⊘

Input: K-shot novel support set SN = {IS ,Mgt
S }

CN∗K
n

10 hcls
S ,HS = E(IS);

11 for class c(c ∈ CN ) in {Mgt
S }

CN∗K
n do

12 Pc
N+ = 1

K
1∑

i,j(M
gt
S )ci,j

∑
i,j(M

gt
S )ci,j(HS)

c
i,j

13 end
14 P = concat[PB ,PN ];

/* If test-time tuning: */

15 Adamw Updata {E,F} via Lmask(MS ,M
gt
S );

16 Momentum update: P;
/* End if */

// Generalized segmentation on CB ∪ CN

Input: Sampled testing image I
17 hcls,H = E(I);
18 M = argmax(F (ϕ([P, G(P,H)]), φ(H)));

Table 6. Effectiveness of our approach with an unsupervised pre-
trained vision transformer model (i.e., ViT-B/16 pre-trained with
DINO) on the PASCAL-5i dataset. ”Tuning” denotes the test-time
tuning on the novel support set before inference under the gener-
alized few-shot segmentation (GFSS) setting.

RD Tuning
1-shot 5-shot

mIoU(N) mIoU(B) hIoU mIoU(N) mIoU(B) hIoU
N/A % 14.2 68.2 23.5 16.5 68.3 26.6

single % 24.3 60.4 34.7 24.6 61.0 35.1
! 41.5 65.7 50.9 42.6 66.2 51.8

multiple % 34.4 69.4 46.0 37.1 70.3 48.6
! 47.8 68.8 56.4 49.0 69.6 57.5

8. Additional Experimental Results
8.1. Effect of various pre-trained vision transformer

model for FSS task

In the main paper, we demonstrate that our proposed rela-
tionship descriptor (RD) module can unlock the potential of
the supervised pre-trained ViT-B/16 model and improve the
generalization ability for FSS tasks. In this section, we fur-
ther present the effectiveness of the proposed method on the
unsupervised pre-trained transformer model DINO [3]. As
shown in Tab. 6, our method can consistently achieve better
performance on both 1-shot and 5-shot settings.

8.2. Complete results under FSS setting

Due to space constraints, several represented literature
works are included in Tab. 3 of the main paper for the binary
FSS task. In this section, we present the full FSS results in
Tab. 7.

Table 7. Comparison of our proposed method with the state-of-
the-art FSS methods. Note that our method has not been trained on
binary segmentation as well as test-time tuning on novel classes.

Method Backbone PASCAL-5i COCO-20i
1-shot 5-shot 1-shot 5-shot

PANet [56] RN-50 48.1 55.7 20.9 29.7
PFENet [53] RN-50 60.1 61.4 32.4 37.4

SCL [66] RN-50 61.8 62.9 - -
RePri [1] RN-50 59.1 66.8 34.0 42.1

MMNet [58] RN-50 61.8 63.4 37.5 38.2
CMN [60] RN-50 62.8 63.7 39.3 43.1
DPCN [28] RN-50 66.7 69.9 43.0 49.8
BAM [22] RN-50 67.8 70.9 46.2 51.2

MSANet [20] RN-50 69.1 74.0 51.1 56.8
SVF [50] RN-50 69.0 72.3 48.5 53.9

SiGCN [29] RN-50 65.3 68.5 41.4 48.0
FECANet [27] RN-50 69.3 74.9 50.9 58.3
ASGNet [23] RN-101 59.3 63.9 34.5 42.5
SAGNN [59] RN-101 62.1 62.8 37.2 42.7

CWT [33] RN-101 58.0 64.7 32.4 42.0
Mining [63] RN-101 62.6 68.8 36.4 44.4
HSNet [35] RN-101 66.2 70.4 41.2 49.5
CAPL [54] RN-101 63.6 68.9 42.8 50.4
IPMT [32] RN-101 66.1 69.2 42.6 47.9
HM [36] RN-101 67.8 70.9 45.9 50.6
VAT [19] RN101 67.9 72.0 41.3 47.9

DACM [61] RN-101 69.1 73.3 43.0 49.2
CLIPSeg [34] CLIP-ViT/B 52.3 - 33.2 -

CLIPSeg+ [34] CLIP-ViT/B 59.3 - 33.2 -
PGMA-Net [47] CLIP-ViT/B 74.1 74.6 - -
PGMA-Net [47] CLIP-RN50 74.1 75.2 54.3 57.1
PGMA-Net [47] CLIP-RN101 77.6 78.6 59.4 61.8

FPTrans [71] ViT-B/16 64.7 73.7 42.0 53.8
FPTrans [71] DeiT-B/16 68.8 78.0 47.0 58.9
HSNet [46] Swin-B 67.3 71.6 47.3 55.1

DCAMA [46] Swin-B 69.3 74.9 50.9 58.3
IPRNet [41] ResNet101 67.5 70.9 46.9 53.3
Ours-single ViT-B/16 77.7 78.0 57.1 59.2

Ours-multiple ViT-B/16 78.9 80.3 60.1 61.2
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