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1. Architecture
1.1. Hyperparameters of Network
Following the hyperparameter table style from Latent Diffusion [8], Table 1 provides an overview of the hyperparameters of
the pretrained SD ×4 Upscaler [1] and our inserted temporal layers. Our codes and models will be publicly released.

Table 1. Hyperparameters for the pretrained SD ×4 Upscaler [1] (including U-Net and VAE) and our inserted temporal layers. We train
our model on the video patches of size 320× 320 with 8 frames.

Hyperparameter U-Net

Training patch shape 8× 320× 320× 3
f 4
z-shape 8× 80× 80× 4
Channels 256
Depth 2
Channel multiplier 1, 2, 2, 4
Attention resolutions 40, 20, 10
Head number 8

Embedding dimension 1024
CA resolutions 40, 20, 10
CA sequence length 77

Hyperparameter VAE

f 4
Channels 128
Channel multiplier 1, 2, 4

Hyperparameter Temporal Layers

Temporal Attention resolutions 40, 20, 10
Head number 8
Positional encoding RoPE [9]

3D CNN kernel size 3, 1, 1

2. Dataset
2.1. YouHQ Dataset
In order to enhance the training of our VSR model using higher-quality videos, we collect a large-scale high-definition
(1080 × 1920) dataset from YouTube, consisting of around 37,000 video clips. The YouHQ dataset encompasses a diverse
category of scenarios, including street view, landscape, animal, human face, static object, underwater, and nighttime scene.
Fig. 1 illustrates the distribution of this dataset.

Figure 1. YouHQ Dataset Distribution. It consists of around 37,000 video clips with a diverse category of scenarios, including street view,
landscape, animal, human face, static object, underwater, and nighttime scene.

3. More Details on Training and Inference
3.1. Training Strategy for Watermark Removal
We divide the training of the U-Net model into two phases. In the first stage, we train the U-Net using both the Web-
Vid10M [2] and our introduced YouHQ datasets for 70k iterations. In the second stage, to eliminate the impact of watermarks
in the WebVid10M data on the results, we conduct an additional 10k iterations of training using only the YouHQ dataset.
Fig. 2 showcases the comparisons before and after the second training phase for watermark removal.
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Figure 2. Comparison before and after watermark removal (WR) training. In the second stage, watermark removal training is performed
only on the YouHQ dataset, effectively removing the watermark introduced by the first-stage training (indicated by the yellow boxes).

3.2. Inference at Arbitrary Resolution and Length
Our model can perform inference on videos of arbitrary scales and lengths. This is achieved by training our model in a
patch-wise manner and using the input video as a strong condition. As a result, our model effectively retains its inher-
ent convolutional characteristics. Therefore, it does not impose strict input resolution requirements. Considering memory
constraints, we crop the input video into multiple overlapping patches, process them separately, and finally combine the
enhanced patches together. Regarding the temporal dimension, at each diffusion step, we cut the video into clips with over-
lapping frames for inference. The latent features from these overlapping frames are averaged and then passed to the next
diffusion step.

3.3. Color Correction
As noted in previous studies [4, 10], diffusion models are prone to experiencing color shift artifacts. To address this issue, we
finetune the VAE-Decoder using the input as a condition, which can help maintain consistency in low-frequency information,
such as color. Additionally, we have observed that incorporating a training-free wavelet color correction module [10] can
further enhance color consistency in the results. As shown in Table 2, when applying wavelet color correction, our method
yields slightly higher fidelity results, as indicated by improved PSNR, SSIM, and IPIPS scores.

4. More Results
4.1. User Study
For further comprehensive comparisons, we carried out a user study that evaluated the results of both real-world and AIGC
videos. We included four different methods in this study, consisting of two diffusion-based image super-resolution methods,
i.e., StableSR [10] and SD ×4 Upscaler [1], along with a CNN-based video super-resolution method, i.e., RealBasicVSR [3].
We invite a total of 20 participants for this user study. Each volunteer was presented with a set of 10 randomly selected video
triplets, which included an input video, the result obtained from one of the compared methods, and our result. Their task was
to choose the visually superior enhanced video from the given options. The user study findings, depicted in Fig. 3, reveal a
clear preference among the volunteers for our results over those produced by other methods.

Figure 3. User study results. Our Upscale-A-Video is preferred by human voters over other methods.
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4.2. Ablation on Different Pretrained Priors
Recent studies [6, 10] have shown that the large text-to-image Stable Diffusion (SD) [8] is highly effective as a generative
prior for blind image restoration tasks. In contrast to these works, we choose to employ a pretrained text-guided image
upscaling model, i.e., SD ×4 Upscaler [1], as our prior for the video super-resolution (VSR) task. We have also employed
Stable Diffusion (SD) as the prior for retraining the network and compared the results of these two different priors for the
VSR task. As indicated in Table 2, our model based on the SD ×4 Upscaler demonstrates clear advantages in terms of
restoration fidelity (PSNR, SSIM, and LPIPS) and temporal consistency (E∗

warp). It is important to note that the variant
network based on SD exhibits a more noticeable color shift issue after training, which necessitates the use of the ’wavelet
color correction’ module [10] for correction. However, even with this correction, our model outperforms the variant using
SD as the prior. It is worth mentioning that when applying wavelet color correction, our model also achieves higher fidelity
results in terms of PSNR, SSIM, and LPIPS. Additionally, Fig. 4 provides visual comparison results for better illustration.

Real-world Video SD Prior SD Prior (+ color fix) Ours

Figure 4. Visual comparison on variant networks with different pretrained priors (i.e., Stable Diffusion (SD) [8] and SD ×4 Upscaler [1]).
The variant network based on SD often suffers from color shift, requiring additional color correction, and may also lead to unexpected
artifacts, such as the child’s face in the second example. Furthermore, Our model shows superior generative capabilities compared to the
SD-based baseline, e.g., in the first example, our model successfully restores the wall, whereas the SD-based model fails to do so.

Table 2. Ablation study of different pretrained priors, i.e., Stable Diffusion [8] and SD ×4 Upscaler [1], on YouHQ40 test set. Our
Upscale-A-Video based on the SD ×4 Upscaler showcases clear advantages in terms of restoration fidelity (PSNR, SSIM, and LPIPS) as
well as temporal consistency (E∗

warp).

Metrics Stable Diffusion Stable Diffusion (+ color fix) SD ×4 Upscaler SD ×4 Upscaler (+ color fix)

PSNR ↑ 19.03 23.81 25.83 26.07
SSIM ↑ 0.590 0.632 0.733 0.737
LPIPS ↓ 0.383 0.343 0.268 0.267
E∗

warp ↓ 1.821 1.707 0.737 0.738
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4.3. Ablation on Positions of Recurrent Latent Propagation Module
As discussed in Sec. 3.3 of the main manuscript, it is not necessary to employ the recurrent latent propagation module during
every diffusion step in the inference process. Instead, we have the flexibility to choose specific steps for latent propagation
and aggregation. Here, we showcase the performance variations when placing this module at different positions, evaluating
on the YouHQ40 test set. The results presented in Table 3 indicate that when propagation happens later in the diffusion
denoising steps during inference, the warping loss tends to decrease, suggesting better temporal consistency. However, the
restoration fidelity also decreases. To balance these factors, we by default choose the middle position for this propagation
module. Additionally, Fig. 5 provides the visual comparisons of the temporal profile, illustrating that as propagation occurs
later, the videos exhibit improved temporal coherence.
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Figure 5. Visual comparison on temporal profile with different positions of recurrent latent propagation module.

Table 3. Ablation study of different positions of recurrent latent propagation module on the YouHQ40 test set.

Metrics
w/o prop. early prop. middle prop. late prop.

- {4, 5, 6, 7} {14, 15, 16, 17} {24, 25, 26, 27}

PSNR ↑ 23.82 24.18 24.53 24.10
SSIM ↑ 0.639 0.646 0.671 0.670
E∗

warp ↓ 2.398 1.931 0.638 0.618

4.4. Effectiveness of Text Prompt
Upscale-A-Video is trained using video data that includes labeled prompts or no prompts, allowing it to work effectively in
both situations. However, when employing the classifier-free guidance approach [5], utilizing proper text prompts as guidance
can noticeably enhance the visual quality. As illustrated in Fig. 6, the use of appropriate text prompts leads to significantly
improved results with finer and more faithful details compared to using empty prompts.
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“Dogs running on grass”

“A train, oil painting”

“A tiger”

“Two pigs”

Figure 6. Visual comparison of using proper text prompts and empty prompts. When employing the classifier-free guidance [5], using
proper text prompts as guidance can significantly improve the visual quality and realism, resulting in finer details. This improvement is
observed in both real-world scene videos (the last two rows) and AIGC videos (the first two rows).
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4.5. More Qualitative Comparisons
In this section, we provide additional visual comparisons of our method with the state-of-the-art methods, including Real-
ESRGAN [11], SD ×4 Upscaler [1], ResShift [12], StableSR [10], DBVSR [7], and RealBasicVSR [3]. Fig. 7, Fig. 8, and
Fig. 9 present the visual results on synthetic, real-world, and AIGC videos, respectively.

Bicubic OursRealBasicVSR GTStableSR SD ×4 UpscalerInput Video

Figure 7. Qualitative comparisons on synthetic datasets. Our Upscale-A-Video exhibits promising enhanced results with more details and
heightened realism. (Zoom in for best view.)

4.6. Video Demo
We also offer a demo video [Upscale-A-Video-demo.mp4] to showcase more video results and comparisons, which are
evaluated on synthetic, real-world, and AIGC videos.
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Bicubic Real-ESRGAN ResShift StableSR

“A Pembroke Welsh Corgi” Upscale-A-Video (Ours)RealBasicVSRSD ×4 Upscaler DBVSR

“A vintage car on the street” Upscale-A-Video (Ours)RealBasicVSRSD ×4 Upscaler DBVSR

Bicubic Real-ESRGAN ResShift StableSR

Bicubic Real-ESRGAN ResShift StableSR

“A leopard in front of grass” Upscale-A-Video (Ours)RealBasicVSRSD ×4 Upscaler DBVSR

Bicubic Real-ESRGAN ResShift StableSR

“A lion walking on the grass” Upscale-A-Video (Ours)RealBasicVSRSD ×4 Upscaler DBVSR

Figure 8. Qualitative comparisons on real-world videos. Our Upscale-A-Video produces promising improvements, delivering increased
detail and heightened realism. (Zoom in for best view.)
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Bicubic Real-ESRGAN ResShift StableSR

“A squirrel eating a burger” Upscale-A-Video (Ours)RealBasicVSRSD ×4 Upscaler DBVSR

Bicubic Real-ESRGAN ResShift StableSR

“A raccoon is playing guitar” Upscale-A-Video (Ours)RealBasicVSRSD ×4 Upscaler DBVSR

Bicubic Real-ESRGAN ResShift StableSR

“Gandalf with long beard” Upscale-A-Video (Ours)RealBasicVSRSD ×4 Upscaler DBVSR

Bicubic Real-ESRGAN ResShift StableSR

“Waterfall is flowing down” Upscale-A-Video (Ours)RealBasicVSRSD ×4 Upscaler DBVSR

Figure 9. Qualitative comparisons on AIGC videos. When guided by input text prompts, our Upscale-A-Video exhibits promising video
results with more details and enhanced realism. (Zoom in for best view.)
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