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Supplementary Material

In this file, we provide more implementation and ex-
perimental details which are not included in the main text.
In Section A, we provide more implementation details and
more information about the dataset. In Section B, we pro-
vide two more instantiations of our model, i.e., the MIA-
VSR-small and MIA-VSR-tiny to compare with other light-
weight VSR models. In Section C, we provide a further
result of fine-tuning our MIA-VSR model by longer se-
quences. More visual examples of different VSR models
are presented in Section D.

A. Dataset and implementation details

A.1. Datasets

REDS [7] REDS is a widely-used video dataset for evalu-
ating video restoration tasks. It has 270 clips with a spatial
resolution of 1280 × 720. We follow the experimental set-
tings of [1, 2, 9] and use REDS4 (4 selected representative
clips, i.e., 000, 011, 015 and 020) for testing and training
our models on the remaining 266 sequences.

Vimeo-90K [10] Vimeo-90K is a commonly used dataset
which contains 64,612 training clips and 7,824 testing clips
(denoted as Vimeo90K-T). Each clip contains 7 frames of
images with a spatial resolution of 448 × 256. We follow
the experimental settings of [1, 2, 9] and evaluate our pro-
posed MIA-VSR method with the Vimeo-90K dataset.

Vid4 [5] Vid4 is a classical dataset for evaluating video
super-resolution methods. It contains 4 video clips (i.e., cal-
endar, city, foliage and walk) and each clip has at least 34
frames (720 × 480). We follow the experimental settings
of [1, 2, 9] and use the 4 sequences in the Vid4 dataset to
compare different VSR models.

A.2. Training and testing details

Implementation details for the REDS model. We train
our MIA-VSR model with the REDS [7] training dataset
with zooming factor 4. We follow the experimental set-
tings of BasicVSR++ [2] and train our MIA-VSR model for
600K iterations. The initial learning rate is set as 2× 10−4.
We train our model with Adam optimizer and the batch size
is set as 24. In the testing phase, we evaluate MIA-VSR
model’s performance on the REDS4 [7] dataset.

Implementation details for the Vimeo-90K and Vid4
model. We train our MIA-VSR model with the Vimeo90K
[7] training dataset with zooming factor 4. We follow
the experimental settings of BasicVSR++ [2] and train our

MIA-VSR model for another 300K iterations with its well-
trained model on the REDS dataset. The initial learning rate
is set as 1×10−4. We train our model with Adam optimizer
and set the batch size at 24. In the testing phase, we evaluate
the performance of the MIA-VSR model on Vimeo90K-T
[10] and Vid4 [5] datasets.

B. Light-weight MIA-VSR models
In order to compare with recently proposed light-weight
methods, we establish two light-weight versions of our
MIA-VSR model, i.e., the MIA-VSR-small and the MIA-
VSR-tiny model. Both the MIA-VSR-small and the MIA-
VSR-tiny models contain 4 feature propagation modules
and each feature propagation module comprises 6 MIIA
blocks with a skip connection. The spatial window size and
the head size are set to 8× 8 and 6. While, the major differ-
ence between the two models lies in their respective num-
bers of channels, we set the channel number of MIA-VSR-
small as 120 and set the channel number of MIA-VSR-tiny
as 96.

The PSNR values, number of parameters and running
FLOPs by different VSR models are presented in Fig.1
and Table 1. In addition to our comparison models in
the main paper, two recently proposed efficient VSR mod-
els, i.e., FTVSR [8] and TTVSR [6], are also included
for reference. Generally, Transformer-based VSR models
could achieve better VSR results than CNN-based meth-
ods. MIA-VSR outperforms the state-of-the-art CNN-based
model BasicVSR++ by a large margin. Furthermore, with
less number of parameters and less running FLOPs, our
MIA-VSR-tiny model could achieve a better trade-off be-
tween computation burden and VSR results over the ex-
isting CNN-based models. In comparison with state-of-
the-art Transformer-based methods, our MIA-VSR model
could achieve better VSR results with much less compu-
tational cost. While, our light-weight models MIA-VSR-
small and MIA-VSR-tiny also achieved a better trade-off
between VSR results and computational cost than the ex-
isting light-weight Transformer-based methods; with 45%
less number of FLOPs, our MIA-VSR-tiny could improve
the TTVSR model by 0.28 dB.

C. Fine-tune MIA-VSR with longer sequences.
For further proving training VSR model with longer se-
quences can get a better result, we chose the MIA-VSR
model which is trained for 450K iterations with 16 frames
from the REDS [7] dataset and fine-tuned it for an-
other 150K iterations with 40 frames, named MIA-VSR†.
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Figure 1. PSNR(dB) and FLOPs(G) comparison on the REDS4 [7] dataset. In comparison with the existing video super-resolution
methods, our proposed MIA-VSR model, MIA-VSR-small and MIA-VSR-tiny could obtain better trade-offs between VSR results and
computational cost. Our fine-tuned model MIA-VSR† outperforms the current state-of-the-art model by more than 0.1 dB with nearly
40% less number of FLOPs. Our light-weight model MIA-VSR-tiny outperforms the recent light-weight Transformer-based VSR model
TTVSR[6] by 0.28 dB, with 45% less number of FLOPs. More details can be found in Section B.

Table 1. Quantitative comparison (PSNR/SSIM) on the REDS4 [7], Vimeo90K-T [10] and Vid4 [5] dataset for 4× video super-resolution
task. For each group of experiments, we color the best and second-best performance with red and blue, respectively.

Method Frames Params REDS4 Vimeo-90K-T Vid4
REDS/Vimeo (M) PSNR SSIM FLOPs PSNR SSIM FLOPs PSNR SSIM FLOPs

BasicVSR [1] 15/14 6.3 31.42 0.8909 0.33 37.18 0.9450 0.041 27.24 0.8251 0.134
IconVSR [1] 15/14 8.7 31.67 0.8948 0.51 37.47 0.9476 0.063 27.39 0.8279 0.207

BasicVSR++ [2] 30/14 7.9 32.39 0.9069 0.39 37.79 0.9500 0.049 27.79 0.8400 0.158

FTVSR [8] 40/- 10.8 31.82 0.8960 0.76 - - - - - -
TTVSR [6] 50/- 6.8 32.12 0.9021 0.61 - - - - - -

MIA-VSR-tiny 80/- 4.8 32.40 0.9176 0.35 - - - - - -
MIA-VSR-small 50/- 6.3 32.50 0.9197 0.47 - - - - - -

VRT [3] 16/7 35.6 32.19 0.9006 1.37 38.20 0.9530 0.170 27.93 0.8425 0.556
RVRT [4] 30/14 10.8 32.75 0.9113 2.21 38.15 0.9527 0.275 27.99 0.8462 0.913

PSRT-recurrent [9] 16/14 13.4 32.72 0.9106 2.39 38.27 0.9536 0.297 28.07 0.8485 0.970
MIA-VSR 16/14 16.5 32.78 0.9220 1.61 38.22 0.9532 0.204 28.20 0.8507 0.624
MIA-VSR† 40/- 16.5 32.88 0.9241 1.61 - - - - - -

MIA-VSR† is fine-tuned with the well-trained MIA-VSR model by 40 frames from the REDS [7] dataset.

The comparison with the state-of-the-art Transformer-based
VSR methods (i.e., VRT [3], RVRT [4] and PSRT [9]) can
be found in Fig.1 and Table 1. It has a further improve-
ment of the MIA-VSR model trained with 16 frames from
the REDS dataset by 0.1dB without adding the number of
FLOPs.

D. Visual results
We show more visual comparisons between the existing
VSR methods and the proposed VSR Transformer with

masked inter&intra-frame attention (MIA). We use 16
frames to train on the REDS dataset and 14 on the Vimeo-
90K dataset. Fig.2 and Fig.3 show the visual results. It
can be seen that, in addition to its quantization improve-
ment, the proposed method can generate visually pleasing
images with sharp edges and fine details, such as horizontal
bar patterns of buildings and numbers on license plates. On
the contrary, existing methods suffer from texture distortion
or loss of detail in these scenes.
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Figure 2. Visual comparison for 4× VSR on REDS4 dataset.
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Figure 3. Visual comparison for 4× VSR on Vid4 dataset.
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