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A. Dataset Details
A.1. Key Data Statistics

We conduct extensive experiments on nine real-world
Anomaly Detection (AD) datasets. Table 1 provides key
data statistics for all the datasets used in this study. We fol-
low exactly the same settings as prior Open-set Supervised
Anomaly Detection (OSAD) studies [4, 7]. Particularly, we
follow the original settings of MVTec AD and split the nor-
mal samples into training and test sets; for the other eight
datasets, the normal samples are randomly split into training
and test sets using a 3:1 proportion.

Dataset Original Training Original Test
|C] Type Normal Normal Anomaly
Carpet 5 Texture 280 28 89
Grid 5 | Texture 264 21 57
Leather 5 Texture 245 32 92
Tile 5 Texture 230 33 83
‘Wood 5 Texture 247 19 60
Bottle 3 | Object 209 20 63
Capsule 5 Object 219 23 109
Pill 7 | Object 267 26 141
Transistor 4 Object 213 60 40
Zipper 7 Object 240 32 119
Cable 8 | Object 224 58 92
Hazelnut 4 Object 391 40 70
Metal_nut 4 Object 220 22 93
Screw 5 Object 320 41 119
Toothbrush 1 Object 60 12 30
MVTec AD 73 - 3,629 467 1,258
AITEX 12 | Texture 1,692 564 183
SDD 1 Texture 594 286 54
ELPV 2 | Texture 1,131 377 715
Optical 1 Object 10,500 3,500 2,100
Mastcam 11 | Object 9,302 426 451
BrainMRI 1 | Medical 73 25 155
HeadCT 1 | Medical 75 25 100
Hyper-Kvasir 4 Medical 2,021 674 757

Table 1. Statistical details for nine real-world AD datasets, with
the first 15 rows displaying detailed information for subsets of the
MVTec AD dataset.

MVTec AD [1] is a widely-used dataset that enables re-
searchers to benchmark the performance of anomaly detec-
tion methods in the context of industrial inspection applica-

*Corresponding author: G. Pang (gspang@smu.edu.sqg)

tions. The dataset includes over 5,000 images that are di-
vided into 15 object and texture categories. Each category
contains a training set of anomaly-free images, as well as a
test set that includes images with both defects and defect-
free images.

AITEX [9] is a textile fabric database that comprises 245
images of 7 different fabrics, including 140 defect-free im-
ages (20 for each type of fabric) and 105 images with vari-
ous types of defects.

SDD [10] is a collection of images captured in a controlled
industrial environment, using defective production items as
the subject. The dataset includes 52 images with visible
defects and 347 product images without any defects.

ELPYV [3] is a collection of 2,624 high-resolution grayscale
images of solar cells extracted from photovoltaic modules.
These images were extracted from 44 different solar mod-
ules, and include both intrinsic and extrinsic defects known
to reduce the power efficiency of solar modules.

Optical [11] is a synthetic dataset created to simulate real-
world industrial inspection tasks for defect detection. The
dataset comprises ten individual subsets, with the first six
subsets (referred to as development datasets) intended for
algorithm development purposes. The remaining four sub-
sets (known as competition datasets) can be used to evaluate
algorithm performance.

Mastcam [5] is a novelty detection dataset constructed from
geological images captured by a multispectral imaging sys-
tem installed on Mars exploration rovers. The dataset com-
prises typical images as well as images of 11 novel geologic
classes. Each image includes a shorter wavelength (color)
channel and a longer wavelengths (grayscale) channel.

BrainMRI [8] is a dataset for brain tumor detection ob-
tained from magnetic resonance imaging (MRI) of the
brain.

HeadCT [8] is a dataset consisting of 100 normal head CT



slices and 100 slices with brain hemorrhage, without dis-
tinction between the types of hemorrhage. Each slice is
from a different person, providing a diverse set of images
for researchers to develop and test algorithms for hemor-
rhage detection and classification in medical imaging appli-
cations.

Hyper-Kvasir [2] is a large-scale open gastrointesti-
nal dataset which is collected during real gastro- and
colonoscopy procedures. It is comprised of four distinct
parts, including labeled image data, unlabeled image data,
segmented image data, and annotated video data.

B. Implementation Details

B.1. Generating Heterogeneous Anomaly Distribu-
tion Datasets

Our proposed approach creates a diverse collection of data
subsets by randomly selecting a subset of normal clusters
and incorporating labeled anomaly examples to form the
support and query sets for learning heterogeneous anomaly
distributions. Specifically, we generate each data subset as
follows.

Normal Samples in Each Data Subset. We employ the
K-means algorithm to cluster normal samples into three
groups. In each data subset, we randomly select two clusters
to form the support and query sets. We follow this way to
generate six such data subsets. Furthermore, we include an
additional subset consisting of all normal samples to capture
a holistic view of the distribution of normal instances, in
which normal samples are randomly divided into two parts
to form the support and query sets.

Abnormal Samples in Each Data Subset. To simulate
open-set environments in heterogeneous anomaly distribu-
tion generation component, each anomaly distribution D;
is splited into two disjoint subsets, i.e., D; = {Df, D},
which correspond to support and query sets respectively,
with the support set D7 = A7) ; UA7 ; used to train our base
model ¢; and the query set D = X,/ ;UX! ; used to validate
its open-set performance. For the setting with M = 10, we
randomly select 50% samples from seen anomaly set and
one normal cluster to form support set, while the remain-
ing 50% seen anomalies are used in the query set. Under
the protocol of having only one seen anomaly example, the
example is included in both sets.

To enhance the variety of anomaly samples in our ap-
proach, we introduce three distinct anomaly augmenta-
tion techniques to generate pseudo anomaly samples: Cut-
Mix [12], CutPaste [6], DREAM Mask [13]. These
techniques are randomly applied to each heterogeneous
anomaly distribution subset to introduce diverse types of
pseudo anomalies.

Algorithm 1 Anomaly Heterogeneity Learning (AHL)

Input: Input D = {x,y}, {#}7, v
Output: Output g
1: /* Heterogeneous Anomaly Distribution Generation */
2: Construct D; through grouping training set D into T’
groups
3: /* Collaborative Differentiable Learning */
4: for epoch = 1to N do
5. Update parameter of base model ¢; for D; based on
Eq.(1)
6: /* Learning Importance Scores of Individual
Anomaly Distributions */
if epoch >= 5 then
8: Compute the generalization error r; and impor-
tance score w; for ¢; with the help of sequential
model ¢ via Eq.(6) and Eq.(7), respectively
9: else
10: Treat all ¢ equally, w; = %
11:  endif
12:  Update parameter of g based on Eq.(4)
13:  Set the parameters of ¢; as the new weight parame-
ters of g
14: end for

B.2. The Algorithm of 2HL

The overall objective of our AHL framework is to achieve a
unified and robust AD model via synthesizing anomaly het-
erogeneities learned from various heterogeneous anomaly
distributions. We summarize the Anomaly Heterogeneity
Learning (AHL) procedure in Algorithm 1. Specifically,
our framework first generates 7' heterogeneous anomaly
datasets, with each subset is sampled from the train-
ing set and contains a mixture of normal samples and
(pseudo) anomaly samples, denoted as {D;}7_,. In do-
ing so, each subset is characterized by different set of
normality/abnormality patterns,embodying heterogeneous
anomaly distributions. We then employ a set of base mod-
els, denoted as {¢;}._,, to learn the underlying anoma-
lous heterogeneity from these heterogeneous anomaly dis-
tributions. Moreover, a self-supervised sequential model-
ing approach is introduced to estimate the generalization
errors 7; and importance scores w; for each base model.
Finally, we incorporate knowledge learned from heteroge-
neous anomaly distributions into a unified heterogeneous
abnormality detection model g to capture richer anomaly
heterogeneity.

AHL is a generic framework, in which off-the-shelf open-
set anomaly detectors can be easily plugged and gain sig-
nificantly improved generalization and accuracy in detect-
ing both seen and unseen anomalies. Once we choose a
base anomaly detector, the training strategy and objective



Dataset One Anomaly E ( ) Ten Anomaly E (
SAOE MLEP FLOS DevNet DRA AHL(DevNet) AHL(DRA) SAOE MLEP FLOS DevNet DRA AHL(DevyNet) AHL(DRA)

Carpet 0.766:0098  0.701:0001  0.755:0026  0.778+0.055  0.873+0.035 0.802+0.018 0.877+0.004 0.755:0136  0.781:x0.049  0.780+0.009  0.864+0012  0.945+0.014 0.867+0.006 0.953:0.001
Grid 0.921:0032  0.839:0028  0.871x0076  0.86820031  0.972:0.016 0.872:0032 0.97520.005 0.952:0011  0.980:0009  0.966+0005  0.901z0016  0.990:0.008 0.9140.003 0.992:0.002
Leather 0.996:0007  0.781:0020  0.791x0057  0.874x0016  0.988x0.003 0.880:0.005 0.988:0.001 1.0000000  0.813:0.158  0.993:0004 0.986x0033  1.000=0.000 0.996:0.008 1.000:0.000
Tile 0.935:0034  0.92720036  0.78720038  0.872:0035  0.966:0.014 0.909=0.007 0.968=0.001 0.944:0.013 0.988x0.009  0.952:0010  1.000z0.000  1.000=0.000 1.000:0.000 1.000:0.000
Wood 0.948:0000  0.660:0.142  0.92720065 0.91720020  0.9870.012 0.947+0.020 0.9870.003 0.976:0031  0.999:0.002  1.0000.000  0.999:0.000  0.998:0.013 1.000-0.000 0.998:0.000
Bottle 0.989:0019  0.927:0090  0.975:0023  0.98620012  1.000x0.000 0.994:0.004 1.000:0.000 0.998:0003  0.981x0004  0.995:0002  0.996:0005  1.000=0.000 0.998:0.001 1.000:0.000
Capsule 0.611:0100  0.55820075  0.666:0020 0.567:0042  0.646:0.029 0.581x0202 0.665:0.030 0.850:0054  0.818:0063  0.902:0017  0.872:0017  0.928:0.011 0.885:0.012 0.930:0.001
Pill 0.652:0078  0.656:0061  0.745:0064  0.779:0018  0.83120.026 0.78120.087 0.840=0.003 0.872:0.049 0.845:0048  0.929:0.012  0.882:0008  0.918x0.009 0.900:0.004 0.918=0.001
Transistor 0.680:0.182  0.695:0.124  0.709:0041  0.732:0075  0.727=0.105 0.73720.098 0.7960.003 0.860:0053  0.927+0043  0.862:0.037  0.907x0004  0.919:0.003 0.912+0.002 0.926:0.009
Zipper 0.970:0033  0.856:0086  0.885:0033  0.914x0027  0.983:0.008 0.928:0.006 0.986:0.000 0.995:0004  0.965:0002  0.990:0008  0.992:0008  1.000:0.000 0.995:0.002 1.000:0.000
Cable 0.819:0060  0.688:0017  0.790:0039  0.790z0086  0.855x0.007 0.793x0.001 0.858:0.011 | 0.862+0.022  0.857:0062  0.890:0063  0.901x0006  0.914x0.006 0.907:0.004 0.921:0.001
Hazelnut 0.961:0042  0.70420090  0.97620021  0.970:0005  0.982:0.005 0.9780.003 0.989:0.004 1.000:0.000 1.000+0.000  1.000x0.000  1.000:0.000  1.000=0.000 1.000:0.000 1.000:0.000
Metal_nut 0.922:0033  0.878:0038  0.930:0022  0.874x0014  0.950z0.011 0.880:0.002 0.952+0.003 0.976:0013  0.974x0009  0.984x0004  0.992:0003  0.997:0.005 0.997:0.003 0.998:0.000
Screw 0.653:0074  0.675:0204  0.33720001  0.76620045  0.9020.032 0.769:0.031 0.927:0.009 0.975:0023  0.899:0039  0.940:0017  0.981x0013  0.978z0.012 0.984:0.005 0.985:0.002
Toothbrush | 0.686:0.110  0.617:0058  0.7310028  0.790:0.029  0.675:0.019 0.79420.016 0.710x0.007 0.865:0062  0.783x0048  0.900:0008  0.950x0.025  0.908:0.007 0.959:0.002 0.921:x0.007
MVTec AD 0.834:0007  0.74420019  0.792:0014  0.832:0016  0.889:0.013 0.84320.021 0.901:0.003 0.926:0010  0.90720005  0.939:0007  0.948:0005  0.966:0.002 0.9540.003 0.9700.002
AITEX 0.675:0094  0.564:0055  0.538:0073  0.609:0054  0.693:0031 0.70420.004 0.73420.008 0.874:0024  0.867+0037  0.841x0049  0.889:0007  0.892+0.007 0.903:0.011 0.925:0.013
SDD 0.781:0000  0.811:0045  0.840+0043  0.851x0003  0.907:0.002 0.8640.001 0.909:0.001 0.955:0020  0.783x0013  0.967s0.018  0.985:0004  0.990:0.000 0.991:0.001 0.991:0.000
ELPV 0.635:0092  0.578:0062  0.457x0056  0.81020.024  0.676x0.003 0.828:0.005 0.7230.008 0.793:0047  0.79410047  0.81820032  0.843:0001  0.843:0.002 0.849:0.003 0.850:0.004
Optical 0.815:0014  0.51620009  0.51820003  0.513x0.001  0.880+0.002 0.547+0.009 0.888x0.007 0.941:0013  0.740:0039  0.720+0055  0.785:0012  0.966:0.002 0.841:0.010 0.976:0.004
Mastcam 0.662:0018  0.625:0045  0.542:0017  0.627x0049  0.709:0.011 0.644:0013 0.743:0.003 0.8100020  0.798:0.026  0.703:0.029  0.797<0.021  0.849:0.003 0.825+0.020 0.855:0.005
BrainMRI 0.531:0060  0.632:0017  0.693:0036  0.853x0.045  0.747x0.001 0.8660.004 0.7600.013 0.900:0041  0.959z0011  0.955:0011  0.951x0007  0.971z0.001 0.959:0.008 0.977+0.001
HeadCT 0.597:0022  0.758:0038  0.698x0002  0.755:0029  0.804:0.010 0.7810.007 0.825:0.014 0.935:0021  0.972x0014  0.971x0004  0.997x0.002  0.988:0.001 0.999:0.003 0.993:0.002
Hyper-Kvasir | 0.498:0100 0.445:0040  0.668x0004  0.73420020  0.712:0010 0.7680.015 0.742:0.015 0.666:0050  0.600:0060  0.773:0029  0.822:0031  0.84420.001 0.8730.009 0.8800.003

Table 2. AUC results(mean#std) on nine real-world AD datasets under the general setting. Best results and the second-best results are

respectively highlighted in Red and Bold.

function should be consistent with it. Following the pro-
posed loss of base models (i.e., DRA and DevNet), we
adopt the deviation loss [7] to evaluate the loss between
predicted anomaly scores and ground truths in the whole
training phase:

gdev (Xv Y; h’) :H(y 0) (dev(x; h))‘
+ I(y = 1) max(0, m — dev(x; h)),

where [(.) is an indicator function that is equal to one when
the condition is true, and zero otherwise; h(-) denotes the
anomaly detection model. dev(x) = w with i, and
o, representing the mean and standard deviation of a set
of sampled anomaly scores from the Gaussian prior distri-
bution A'(0,1). m is a confidence margin which defines a

radius around the deviation.

C. Detailed Empirical Results
C.1. Full Results under General Setting

Table 2 shows the detailed comparison results of AHL and
SOTA competing methods under the general setting. It in-
cludes the performance metrics of each category of MVTec
AD dataset. Overall, our proposed AHL model consistently
outperforms the baseline methods in both ten-shot and one-
shot settings across all three application scenarios. AHL
(DRA) achieves the best performance in terms of AUC. On
average, AHL improves the AUC of DRA and DevNet by up
to 4% and 9%, respectively.

C.2. Full Results under Hard Setting

To investigate the detection performance of AHL framework
on novel anomaly classes, we evaluate its performance un-
der the hard setting, and present the detailed results for six
multi-subset datasets, including each anomaly class-level

performance, in Table 3. Overall, our models — AHL (DRA)
and AHL (DevNet) — achieve the best AUC results in both
M = 1and M = 10 setting protocols. Specifically, AHL
improves the performances of DRA and DevNet by up to
3.2% and 3% AUC, respectively. The results here are con-
sistent with the superiority performance of AHL in the gen-
eral setting.

C.3. More Ablation Study Results

Class-level Results under Hard Setting. To evaluate
the effectiveness of each module in our AHL approach (+
HADG + CDL™), we compare it with the base model
(DRA), the base model using randomly sampled data dis-
tribution subsets and initial CDL component (+ CDL), and
the base model with HADG and initial CDL component
(+ HADG + CDL). Table 4 shows the detailed results of
class-level anomaly detection in the hard setting. The re-
sults show that all the modules in the AHL framework con-
tribute to improving the detection performance on unseen
anomaly classes, demonstrating the importance of anomaly
heterogeneity.

Importance of Pseudo Anomalies. Moreover, since De-
vNet [7] does not use pseudo anomalies, we also evalu-
ate the impact of removing the pseudo anomalies on the
AHL framework when using DevNet as the base model. As
shown in Figure 1, AHL (DevNet) remains substantially bet-
ter than the original DevNet model in such cases.

Effectiveness of Data Overlapping in HADG Module.
Table 5 shows the results of AHL (DRA) using three data
overlapping types: overlap occurring exclusively in (1) the
query set (D?->D17), (2) the support set (D?->D?), and (3)
in both sets (D® <> D). It is clear that the overlapping
between DY and D? typically does not lead to performance
improvement.



Dataset One Example from One Anomaly Class Ten Example from One Anomaly Class

SAOE MLEP FLOS DevNet  DRA AHL(DevNet) AHL(DRA) | SAOE MLEP FLOS DevNet  DRA AHL(DevNet) AHL(DRA)

Color 0.763:0.100  0.547:0056  0.467x0278  0.70120.046  0.890:0.011 0.718:0.009 0.894:0.004 0.467x0067  0.698:0025  0.760:0005  0.77410009  0.899:0.019 0.778:0.004 0.929:0.007

Cut 0.664x0.165  0.658:0056  0.685:0007 0.679z0018  0.890x0.024 0.684x0.014 0.934:0.003 0.793:0175  0.653s0.120  0.68810059  0.817s0021  0.942:0.012 0.8250.006 0.9430.002

Carpet Hole 0.772:0071  0.653:0065  0.594x0142  0.72920032  0.91520.045 0.736:0.062 0.935:0.014 0.83120125  0.67420076  0.733:0014  0.808:0.016  0.95820.031 0.815:0.036 0.960=0.003
Metal 0.780:0172  0.706:0047  0.70120028  0.822:0016  0.8770.013 0.846x0.012 0.93120.007 0.883:0043  0.764:0061  0.678:0083  0.885:0012  0.916:0.017 0.899:0.026 0.92120.003

Thread 0.787s0204  0.831x0.117  0.941s0005  0.937:0017  0.954=0.010 0.941:0.006 0.966:0.005 0.834:0207  0.967:0006  0.946:0005  0.981:0005  0.985:0.005 0.984:0013 0.991:0.001

Mean 0.7530055  0.679:0029  0.678x0040  0.77420.007  0.905x0.006 0.785:0015 0.932:0.003 0.762:0073 07510023 0.761x0012  0.85320.005  0.940:0.006 0.860:0.013 0.949:0.002

Bent 0.864:0032  0.743:0013  0.851:0046  0.81720033  0.952x0.015 0.831x0.020 0.954:0.003 090120023 0.956:0013  0.827x0075  0.907s0.018  0.98720.003 0.909:0.016 0.989:0.000

Color 0.857:0037  0.835:0075  0.82120059  0.903:0019  0.930:0.021 0.910=0.008 0.933:0.008 0.879:0018  0.945:0039  0.978:0008  0.992:0.015  0.95620.009 0.995:0.002 0.9580.001

Metal_nut Flip 0.751x0000  0.813:0031  0.799:0.058  0.751x0039  0.931:0.017 0.755:0.022 0.931:0.001 0.795:0062  0.805:0057  0.942:0000  0.982x0.010  0.931:0.010 0.987:0.003 0.937x0.003
Scratch 0.792:0075  0.907x0085  0.94720027  0.974x0.061  0.929:0.009 0.981:0.035 0.934:0005 | 0.845:0041  0.805:0153  0.943:0002  0.998:0.005  0.998:0.006 0.998:0.001 0.999:0.00

Mean 0.8160020  0.825:0023  0.855:0024  0.861:0.019  0.936x0.011 0.869:0.004 0.939:0.004 0.855:0016  0.878x0058 092210014 0.97020009  0.968:0.006 0.972:0.002 0.971x0.001

Broken end 0.778:0.068  0.441s0.111  0.645:0030  0.702:0037  0.69620.057 0.7160.014 0.704+0.005 0.712:0068  0.73210.065  0.585:0037  0.65810062  0.70820.062 0.688:0.013 0.735:0.010

Broken pick 0.644:0039  0.476:0070  0.598x0023  0.567=0.016  0.719x0.004 0.575:0.005 0.7270.003 0.629:0012  0.555:0027  0.548:0054  0.595:0017  0.671:0.034 0.612:0.005 0.683:0.002

Cut selvage 0.68120077  0.434:0149  0.69420036  0.674x0021  0.7510.006 0.680:0.017 0.753:0.007 0.770:0014  0.682x0025  0.745:0035  0.703:0062  0.777x0.021 0.737:0012 0.781:0.006

AITEX Fuzzyball 0.650:0.064  0.525:0157  0.525:0043  0.629:0.103  0.631:0.018 0.644:0.031 0.647:0007 | 0.842:0.026  0.677:0223  0.550:0082  0.736:0.101  0.749:0033 0.75520.002 07750024
Nep 0.710:0044  0.51720059  0.734x0038  0.74120011  0.685:0010 0.754:0.012 0.703:0.005 0.771x0032  0.740:0052  0.746:0060  0.806:0.039  0.78420.025 0.836:0.007 0.792:0.007

Weft crack 0.582:0.108  0.400:0020  0.546:0.114  0.56120085  0.693x0.002 0.588<0.018 0.706=0.009 0.618:0172  0.370:0037  0.63610051  0.61410007  0.710:0.016 0.6240.005 0.7130.003

Mean 0.67420034  0.466:0030  0.624x0024  0.64620014  0.696z0.011 0.660:0.007 0.7070.007 0.72420032  0.626:0041  0.635:0043  0.685:0016  0.733z0.011 0.709:0.006 0.747+0.002

Mono 0.563:0.102  0.649:0027  0.71720025  0.620:0057  0.762:0.017 0.638:0.019 0.774z0.013 0.569:0035  0.756:0045  0.629:0072  0.639:0.067  0.735:0.008 0.6630.007 0.745:0.004

ELPV Poly 0.665:0.173 048320247 0.665:0021  0.705:0.011  0.681:0026 0.717:0.007 0.705:0006 | 0.796:008¢  0.734z0078  0.662:0042  0.80620.027  0.80620.004 0.842:0.003 0.831:0.011
Mean 0.614:0048 056610111 0.691:0008  0.663:0.008  0.722:20.006 0.678:0.006 074020003 | 0.683:0047  0.745:0020 0.646:0032  0.722:0018  0.77120.005 0.752:0.005 0.788:0.003

Bedrock 0.636:0072  0.532:0036  0.499:0056  0.508:0.107  0.653x0.019 0.533:0.065 0.679:0.012 0.636:0068  0.512:0062  0.499:0008  0.58610012  0.65420.013 0.589s0.010 0.673:0.006

Broken-rock 0.699:0.058  0.54420088  0.569:0025  0.558:0016  0.640:0.023 0.572:0.014 0.661:0.009 0.712:0052  0.651s0063  0.608:0085  0.56210033  0.70420.007 0.572+0.024 0.722+0.004

Drill-hole 0.697:0.074  0.63620.066  0.539:0077  0.555:0026  0.642:0.035 0.563:0.012 0.654:0.004 0.682:0042  0.660:0002  0.6010009  0.59020.074  0.75720.008 0.61020.075 0.760+0.003

Drt 0.735:0020  0.624z0042  0.591x0042  0.570:0048  0.733z0.027 0.581x0.023 0.72420.006 0.76120062  0.616:0048  0.652:0024  0.620:0031  0.75720.006 0.629:0.016 0.7720.004

Mastcam Dump-pile 0.682:0022  0.545:0127  0.508:0021  0.510:0008  0.74120.022 0.519:0.004 0.756:0.011 0.750:0037  0.696:0047  0.700:0070  0.689:0070  0.7570.008 0.695:0.021 0.802:0.005
Float 0.711x0041  0.530:0075  0.55120030  0.50720039  0.688:0.031 0.524+0017 0.702:0.005 0.7180064  0.671s0032  0.736:0041  0.64010012  0.749:0.009 0.647:0.008 0.76520.002

Meteorite 0.669:0.037  0.47620014  0.46220077  0.43620033  0.60420.020 0.463:0.008 0.616<0.013 0.647:0030  0.473:0047  0.568:0053  0.56120053  0.689:0.010 0.572:0.015 0.691:0.001

Scuff 0.679z0.048  0.492:0037  0.508:0070  0.49620.121  0.573z0017 0.515:0.013 0.58120.020 0.676:0.019  0.50420052  0.575:0042  0.44720043  0.62620.016 0.506:0.104 0.656:0.009

Veins 0.688:0.000  0.489:0028 04930052 0.530:0.006  0.650:0.012 0.548:0.010 0.687:0.017 | 0.686:0053  0.510:0000 0.608:0044  0.57720029  0.64420.007 0.598:0.037 0.650:0.003

Mean 0.689:0.037  0.541:0007  0.52420013  0.519:0014  0.658:0.021 0.535:0.003 0.673z0.010 0.697:0014  0.58810016  0.616+0021  0.58810.025  0.704:0.007 0.602:0.008 0.721:0.003

Barretts 0.382:0.117  0.438:0111  0.703:0040  0.682:0.007  0.788x0.008 0.701:0.013 0.792:0.007 0.698:0037  0.540:0014  0.764:0066  0.837:0.014  0.820:0.005 0.850=0.002 0.829:0.002
Barretts-short-seg | 0.367:0050 0.532:0075 0.538+0033  0.608:0077  0.643:0.013 0.629:0.027 0.651+0.006 0.661x0034  0.480+0.107  0.810:0034  0.7900.017  0.829:0.006 0.812:0.005 0.895:0.003
Hyper-Kvasir Esophagitis-a 0.51820063  0.491x0084  0.536:0.040  0.567x0.034  0.759x0.015 0.583=0.015 0.760:0.006 0.820:003¢  0.646x0036  0.815:0022  0.867x0.004  0.854=0.006 0.876:0.002 0.878x0.021
Esophagitis-b-d | 0.358:0039 0.457:0086 0.505:0039  0.535:0.025  0.604x0.022 0.562:0.010 0.622:0.014 0.61120017  0.621x0042  0.75420073  0.812:0.025  0.785:0.006 0.842:0.003 0.815:0.010

Mean 0.406:0018 04800044 0.57120004  0.598:0.006  0.69920.009 0.619:0.005 070620007 | 0.69820021  0.571x0014  0.786:0021  0.827x0008  0.822:0013 0.845:0.003 0.854:0.004

Table 3. AUC results(mean%std) on

nine real-world AD datasets under the hard setting. Best results and the second-best results are

respectively highlighted in Red and Bold. Carpet and Meta_nut are two subsets of MVTec AD. The same set of datasets is used as in [4].

Datsset Subset DRA + CDL +HADG + CDL _ + HADG+ CDL™
Color 0.899x0.019  0.91720.004 0.919:0.003 0.929:0.007
Cut 0.942:0012  0.938:0.004 0.943:0.001 0.943:0.002
Carpet Hole 0.958:0.031  0.954=0.010 0.952:0.002 0.960-0.003
Metal 0.916:0017  0.919:0.008 0.91420.006 0.921:0.003
Thread 0.985:0005  0.985:0003 0.988:0.002 0.991:0.001
Mean 0.940:0006  0.943=0.002 0.943:0.003 0.949:0.002
Broken end 0.708:0062  0.714=0.011 0.719:0.005 0.735:0.010
Broken pick 0.6710034  0.670:0.003 0.678:0.005 0.683:0.002
Cut selvage 0.77720021  0.7770.009 0.779:0.018 0.781:0.006
AITEX Fuzzyball 0.749x0033  0.742:0.010 0.756x0.021 0.775:0.024
Nep 0.784:0.025  0.786:0.007 0.788:0.005 0.792:0.007
Weft crack 0.7100016  0.708x0.003 0.71120.003 0.713:0.003
Mean 0.733:0011  0.733:0.005 0.739:0.007 0.747:0.002
Mono 0.735:0008  0.73820.008 0.739:0.006 0.745:0.004
elpv Poly 0.80620.004  0.809:0.006 0.81720.012 0.831:0.011
Mean 0.771:0005  0.77420.004 0.784:0.004 0.788:0.003
Barretts 0.820+0.005  0.81920.006 0.822:0.009 0.829:0.002
Barretts-short-seg | 0.829:0006 0.864:0012 0.887:0.016 0.895:0.003
Hyper-Kvasir Esophagitis-a 0.854:0.006  0.863:0.000 0.871:0.005 0.878:0.021
Esophagitis-b-d 0.785+0.006  0.795:0.005 0.8060.004 0.815:0.010
Mean 0.822:0013  0.835:0.004 0.847::0.008 0.854:0.004

Table 4. Ablation study class-level results of AHL and its three
main variants under hard settings. Best results and the second-best
results are respectively highlighted in Red and Bold.

Dataset Ds->D1 | DI->D* D% <>D? Ours
AITEX 0918 0.917 0.917 0.925
SDD 0.988 0.990 0.991 0.991
ELPV 0.853 0.844 0.842 0.850
BrainMRI 0.970 0.969 0.970 0.977
HeadCT 0.993 0.991 0.993 0.993
Hyper-Kvasir 0.872 0.875 0.876 0.880

Table 5. Results with various data overlapping in the support and query

sets in HADG.
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