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A. More Implementation Details
Global Codebook Generation. To generate the global
codebook, we introduce a two-phase process: (1) expand-
ing the LLM vocabulary through the proposed vocabulary
expansion technique (as shown in Figure 1); (2) applying
a filtering strategy to further eliminate the entries with less
semantic meaning.

We use T to represent the original LLM vocabulary and
denote its size by N . To generate bigrams, for each t ∈ T ,
we first input the concatenation of a text prefix (e.g., “a
photo of”) and t into the LLM. The LLM predicts the next
word in an auto-regressive manner. We record the top-M
predictions (where M is 1 by default) with the highest con-
fidences, denoted as {t∗1, . . . , t∗M}. The bigrams for each
t ∈ T are represented by {[t, t∗1], . . . , [t, t∗M ]}. This pro-
cess is repeated for all subwords in the LLM vocabulary.
Ultimately, we collect a set of bigrams, denoted as TBi,
which has a size of N × M . Similarly, we can build a tri-
gram set TTri by feeding each bigram in TBi into the LLM
for next-word prediction. The resulting TTri has a size of
N × M × M . We use {T , TBi, TTri} to represent the ex-
panded LLM vocabulary.

For the filtering process, we compute the CLIP similari-
ties between each image in the training set and every entry
in the expanded LLM vocabulary {T , TBi, TTri}. We then
record the top-5 entries with the highest similarity scores
for each image. Finally, we aggregate these entries from all
images to form the final expanded LLM vocabulary, which
serves as our global codebook TE .
Encoder and Decoder Structures. Figure 2 details the im-
plementation of our V2L Tokenizer’s local encoder and de-
coder. Specifically, the local encoder shares the same ba-
sic structure as VQ-GAN [1], utilizing four residual blocks
with channel dimensions [128, 256, 256, 512] to downsam-
ple the input image by a factor of 8. Similarly, our de-
coder mirrors the encoder’s structure, employing four resid-
ual blocks with channel dimensions [512, 256, 256, 128] to
upsample the image back to its original resolution. We inte-
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grate the information from global tokens into the decoding
process through a cross-attention layer, which is added be-
fore the self-attention layer in the nonlocal block.
Vector Quantization Loss. The proposed V2L Tokenizer
requires optimization of the encoder, the decoder and the
projector. Thus, we follow VQ-VAE [4] and VQGAN [1] to
implement our vector quantization loss, utilizing a straight-
through gradient estimator for optimization:

Lvq = ||X − X̂||2 + ||sg(F )− F̂ ||+ β||sg(F̂ )− F ||
where sg(·) denotes the stop-gradient operation. Note that
our method involves a trainable projector to produce code-
book embeddings. Thus, unlike LQAE [3] and SPAE [5],
the second term in the above equation is also necessary. We
set β to 0.3.
Tuning LLaMA-2 with the V2L Tokenizer. To enhance
the image generation task, we propose to fine-tune an LLM
model. This process begins with the V2L Tokenizer gen-
erating both global and local tokens for the training im-
ages. Subsequently, the global tokens are employed as
a “text prefix”. We then concatenate these global tokens
with the local tokens and input them into the LLM. The
auto-regression loss is applied only to the local tokens.
Due to resource limitations, we fine-tune a 7B LLaMA-
2 model using LoRA [2] on 12 randomly selected classes
from ImageNet training dataset over 100K iterations using
32× NVIDIA V100 GPUs. LoRA weights are integrated
into the query and key projection matrixes, with the hyper-
parameter setting of r = 4, α = 32. For optimization, we
use Adam optimizer, starting with a learning rate of 3e−4.
This rate undergoes half-cycle cosine decay after a 5-epoch
linear warm-up phase. Consequently, the tuned model is
able to predict masked tokens in an auto-regressive man-
ner. The predicted token map is input into the decoder of
the V2L tokenizer to generate the reconstructed image, as
demonstrated in Section 4.3 of our main paper.

B. More Ablation Studies
Vocabulary Expansion. We study the effectiveness of the
proposed vocabulary expansion strategy on the 5-way-K-
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Figure 1. Illustration of the vocabulary expansion strategy. In this figure, we set M = 1 for illustrative purposes. The prefix v corresponds
to the text phrase “a photo of”.

4×

Residual 

Block
Convolutional 

Block
Downsample

Block

Residual 

Block

Nonlocal 

Block

Residual 

Block

Group

Normalization

Convolutional

Block
Local Features

Convolutional

Block

Residual 

Block

Nonlocal 

Block

Residual 

Block

Swish

Activation

Residual 

Block

Downsample

Block

Cross

Attention

Group

Normalization

Convolutional

Block

Swish

Activation

L
o
cal Q

u
an

tizer

Local Tokens

Global Tokens
…

Local Encoder

Decoder

Input Image

Reconstruction

4×

Figure 2. Illustration of the local encoder and the decoder of our V2L Tokenizer.

shot Mini-ImageNet classification benchmark. Our studies
include three scenarios: utilizing the original LLM vocabu-
lary without expansion (Subword), applying bigram expan-
sion (Bigram), and employing trigram expansion (Trigram).
The results of these scenarios are detailed in Table 1. The
bigram expansion approach surpasses the non-expansion
method by an average accuracy increase of +13.5 and +9.3
points with 5 and 21 global tokens, respectively. Imple-
menting trigram expansion further elevates the average ac-
curacy to 83.9 and 86.7. The findings demonstrate that em-
ploying vocabulary expansion significantly improves the se-
mantic richness of the terms in the expanded LLM vocabu-
lary, leading to enhanced classification accuracy.
Embeddings of Local Codebook. As shown in Figure 2 of
the main paper, we introduce a trainable projector to project
the LLM embeddings into a visual space, which enhances
reconstruction quality. Table 2 presents our investigation of
various LLM embeddings, including the default projected
LLM embeddings (P-LLaMA-2), the original LLM embed-

dings (LLaMa-2), and those produced by the CLIP-text-
encoder (CLIP). We observe that utilizing the CLIP text
encoder for extracting language embeddings significantly
boosts the quality of reconstruction. This improvement
likely stems from the CLIP model’s inherent alignment be-
tween linguistic and visual spaces. By introducing a train-
able projector, this alignment is further refined, leading to
superior reconstruction performance.

Denoising Step and Condition Length. As shown in Fig-
ure 4 of the main paper, we denoise m masked tokens at a
time using n tokens preceding them for the inpainting task,
where m and n denote denoising step and condition length,
respectively. We vary the values of m and n and report the
FID scores for inpainting task in Figure 3. As the denoising
step increases, the performance decreases. Additionally, an
excessively long condition length leads to suboptimal per-
formance since the LLM struggles to handle the complex
context of a new “foreign language” in the visual modality.



Task Induction: ✓ ✓ ✓ ✓ ✓ ✓
Method #Tokens Inner-shot: 1 1 3 5 1 1 1 Avg

Repeats: 0 0 0 0 1 3 5

Subword
5 LLaMA-2 (70B)

31.8 65.6 82.8 85.6 68.8 69.9 69.3 67.7
Bigram 40.6 83.1 91.7 92.6 86.5 87.0 86.9 81.2
Trigram 41.7 87.1 94.8 96.1 88.9 89.2 89.1 83.9

Subword
21 LLaMA-2 (70B)

34.3 74.1 90.1 91.8 79.6 80.2 80.7 75.8
Bigram 44.8 84.1 95.0 95.5 91.6 92.3 92.5 85.1
Trigram 46.5 89.1 96.9 97.8 91.4 92.7 92.9 86.7

Table 1. Ablation study for the proposed vocabulary expansion strategy on the 5-way-K-shot Mini-ImageNet classification benchmark.

Vocabulary Embedding FID↓ LPIPS↓ PSNR↑

LLaMA-2 LLaMA-2 9.51 0.17 21.48
LLaMA-2 CLIP 4.58 0.11 23.58
LLaMA-2 P-LLaMA-2 3.41 0.08 23.56

Table 2. Ablation study on various LLM embeddings. We report
results on ImageNet-1K val set.

C. More Qualitative Results
Semantic Interpretation. We provide qualitative results
for semantic interpretation in Figure 6 of the main paper.
Here, we show additional visualizations in Figure 4.
Image Captioning and Visual Question Answering. Fig-
ure 5 of the main paper visualizes the results of image cap-
tioning and VQA. In Figures 5 and 6, we compare our ap-
proach with SAPE [5] using additional samples. Our model
consistently generates more reasonable image captions and
provides more accurate answers.
Image Reconstruction. In Table 3 of the main paper, we
report the quantitative results for reconstruction evaluation.
In this study, we show several qualitative visualizations.
In Figure 7, we compare our approach with VQ-GAN [1],
LQAE [3] and SPAE [5]. Our approach is notable for its
ability to reconstruct images with a high level of detail.
Image Denoising. We show visualizations for image de-
noising in Figure 7 of the main paper. Here, we provide
extra visualizations for inpainting (Figure 8), outpainting
(Figure 9), deblurring (Figure 10), rotation restoration (Fig-
ure 11) and shift restoration (Figure 12).
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Figure 4. More visualizations for semantic interpretation.

A man sits on the couch with his dog on his lap
A woman in a red shirt and black pants is running

A skateboarder is doing a trick with his skateboard
A vintage train car with a chandelier

A large pizza with a pile of cheese on top
A person holding a slice of bread in a bowl

A bed with curtains hanging over it in a bedroom
A large pool in front of a house

A group of zebras grazing in the grass
A large group of people gathered around a table

A messy bedroom with a queen size bed and a wooden floor

A large group of people gathered around a table
A herd of elephants is walking in the grass

A herd of cows are grazing on a field of grass
A football match with a player running with the ball

A person holding a horse in front of a barn

Figure 5. Visualizations for image caption. Blue: ours. Orange: SPAE [5] (re-implementation).

Q1: What color is the sign?

Ours: red SPAE: red

Q2: What does the red sign say?

Ours: stop SPAE: No

Q3: What would a person park here?

Ours: car SPAE: a

Q1: Is this an adult party?

Ours: no SPAE: yes

Q3: What is being celebrated?

Ours: birthday SPAE: Chinese

Q2: Who is in front of the cake with candles?

Ours: mom SPAE: boy

Q1: What sport is being played?

Ours: baseball SPAE: tennis

Q2: What is the name of the teams?

Ours: Cubs SPAE: Barcelona

Q3: Is the catcher wearing safety gear?

Ours: yes SPAE: yes

Q1: What type of animal is shown?

Ours: elephant SPAE: raccoon

Q3: What kind of coat does the animal have?

Ours: fur SPAE: fur

Q2: How many animals are there?

Ours: 2 SPAE: 2

Figure 6. Visualizations for visual question answering. Blue: ours. Orange: SPAE [5] (re-implementation).
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Figure 7. Visualizations for image reconstruction.
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Figure 8. Visualizations for image inpainting.
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Figure 9. Visualizations for image outpainting.
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Figure 10. Visualizations for image deblurring.
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Figure 11. Visualizations for rotation restoration.
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Figure 12. Visualizations for shift restoration.
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