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A. More Details
Detection Head. Following previous studies [3, 21, 22, 33],
we apply a linear projection to the instance-level content
vectors icon to generate the classification score:

p̂ = Linear(icon). (11)

The classification score, p̂, will be used in three scenarios:
1) selecting encoder proposals in the query alignment strat-
egy, 2) performing bipartite matching for assigning ground
truth, and 3) calculating the classification loss. Moreover,
we employ a Multi-Layer Perception (MLP) with ReLU
activation to generate proposal offsets. Specifically, the
boundary-level content vectors scon, econ are used to com-
pute boundary-level offsets, while the instance-level content
vectors icon are utilized to generate instance-level offsets:

∆s = MLP(scon),
∆e = MLP(econ),
∆i = MLP(icon).

(12)

These offsets are subsequently employed to refine their re-
spective position vectors.

The detection head is appended to the final encoder layer
as well as each decoder layer. Detection losses are com-
puted at these stages to optimize the model. Furthermore, to
preserve the alignment between dual-level queries, we share
ground truth obtained through bipartite matching among
each aligned query.
Training Details. DualDETR is trained on two NVIDIA
TITAN Xp GPUs, with a batch size of 16 per GPU. To en-
sure stable training, we employ ModelEMA [9] and gradi-
ent clipping following [29]. The random seed is fixed at 42
to ensure reproducibility.

B. Additional Experiments
Traditional TAD Benchmarks. The performance of Du-
alDETR on traditional benchmarks, THUMOS14 [10] and
AcitvityNet1.3 [2], is presented in Tab. 6. DualDETR sur-
passes previous query-based methods by a significant mar-
gin at all IoU thresholds on THUMOS14, achieving an im-
pressive average mAP gain of 10.1%. When compared to
standard methods that rely on NMS post-processing, Du-
alDETR exhibits comparable performance to the state-of-
the-art method ActionFormer [29]. Moreover, on Activi-
tyNet1.3, DualDETR also outperforms all previous query-
based methods. These results further demonstrate Du-
alDETR’s superiority in action detection tasks.

Study on Number of Queries. In Tab. 7, we analyze the
effectiveness of the number of decoder queries. We find that
the optimal number of queries is 150, 25, and 96 for Mul-
tiTHUMOS, Charades, and TSU, respectively. This obser-
vation aligns with the number of ground truth instances per
video in each dataset, which is approximately 97, 6.8, and
77 for MultiTHUMOS, Charades, and TSU, respectively.
Study on Number of Layers. In Tab. 8, we examine the
impact of the number of encoder and decoder layers on the
MultiTHUMOS dataset. Our default configuration includes
6 encoder layers and 5 decoder layers. Thanks to the joint
initialization strategy, the performance remains consistently
strong even with a reduced number of decoder layers. In
terms of average performance, our default setting proves to
be the most effective.
Inference Efficiency. We report the efficiency comparison
on multiTHUMOS with two competitive methods Action-
Former [29] and TriDet [19] in Tab. 9. DualDETR achieves
the highest mAP with the least latency among all meth-
ods, perfectly balancing the efficiency-performance trade-
off. The suffix of DualDETR in the table indicates the num-
ber of decoder queries employed.
Qualitative Results. To further compare different detec-
tion paradigms, we present qualitative results in Fig. 6.
Boundary-level detection demonstrates high accuracy in
boundary detection but lacks reliable semantic labels. On
the other hand, instance-level detection achieves robust de-
tection but sub-optimal boundary localization. Our pro-
posed DualDETR combines both paradigms effectively, of-
fering reliable recognition and precise boundary localiza-
tion simultaneously. Additionally, we provide qualitative
results for high-overlap action regions in Fig. 7. Our
method excels in handling complex situations, showcasing
the strong applicability of DualDETR in multi-label action
detection scenarios.

C. Limitation and Future Work

In the query alignment strategy, where each query is
matched with an encoder proposal, the maximum number
of queries is constrained by the number of features in the
encoder feature map. If situations arise where a larger num-
ber of queries is required, additional modules must be de-
vised. Furthermore, to maintain efficiency during training
and testing, DualDETR operates on pre-extracted video fea-
tures following previous practice, which overlooks the gap
between pre-training and downstream tasks. However, with
the emergence of parameter-efficient fine-tuning techniques
like LoRA [8], Adapter [7], and Prompt Tuning [25, 26]



Method Backbone
THUMOS14 [10] ActivityNet-v1.3 [2]

0.3 0.4 0.5 0.6 0.7 Avg. 0.5 0.75 0.95 Avg.

Standard Methods
BMN [13] TSN [23] 56.0 47.4 38.8 29.7 20.5 38.5 50.1 34.8 8.3 33.9
G-TAD [27] TSN [23] 54.5 47.6 40.2 30.8 23.4 39.3 50.4 34.6 9.0 34.1
BC-GNN [1] TSN [23] 57.1 49.1 40.4 31.2 23.1 40.2 50.6 34.8 9.4 34.3
TAL-MR [32] I3D [4] 53.9 50.7 45.4 38.0 28.5 43.3 43.5 33.9 9.2 30.2
TCA-Net [17] TSN [23] 60.6 53.2 44.6 36.8 26.7 44.3 52.3 36.7 6.9 35.5
BMN-CSA [1] TSN [23] 64.4 58.0 49.2 38.2 27.8 47.7 52.4 36.2 5.2 35.4
VSGN [31] TSN [23] 66.7 60.4 52.4 41.0 30.4 50.2 52.4 36.0 8.4 35.1
ContextLoc [34] I3D [4] 68.3 63.8 54.3 41.8 26.2 50.9 56.0 35.2 3.6 34.2
RCL [24] I3D [4] 70.1 62.3 52.9 42.7 30.7 51.0 51.7 35.3 8.0 34.4
AFSD [12] I3D [4] 67.3 62.4 55.5 43.7 31.1 52.0 52.4 35.3 6.5 34.4
DCAN [5] TSN [23] 68.2 62.7 54.1 43.9 32.6 52.3 51.8 36.0 9.5 35.4
TAGS [16] I3D [4] 68.6 63.8 57.0 46.3 31.8 52.8 56.3 36.8 9.6 36.5
MUSES [14] I3D [4] 68.9 64.0 56.9 46.3 31.0 53.4 50.0 35.0 6.6 34.0
Zhu et al. [35] I3D [4] 72.1 65.9 57.0 44.2 28.5 53.5 58.1 36.3 6.2 35.2
ActionFormer [29] I3D [4] 82.1 77.8 71.0 59.4 43.9 66.8 53.5 36.2 8.2 35.6
TriDet [19] I3D [4] 83.6 80.1 72.9 62.4 47.4 69.3 – – – –

Query-Based Methods
TadTR [15] I3D [4] 62.4 57.4 49.2 37.8 26.3 46.6 49.1 32.6 8.5 32.3
RTD-Net [21] I3D [4] 68.3 62.3 51.9 38.8 23.7 49.0 47.2 30.7 8.6 30.8
DINO [30] I3D [4] 69.8 63.1 53.7 41.5 26.4 50.9 – – – –
ReAct [18] TSN [23] 69.2 65.0 57.1 47.8 35.6 55.0 49.6 33.0 8.6 32.6
Self-DETR [11] I3D [4] 74.6 69.5 60.0 47.6 31.8 56.7 52.3 33.7 8.4 33.8
DualDETR I3D [4] 82.9 78.0 70.4 58.5 44.4 66.8 52.6 35.0 7.8 34.3

Table 6. DualDTER’s performance on THUMOS14 and ActivityNet1.3. The results of other methods are mainly from Self-DETR [11].

# Queries (Nq) 80 120 150 180 250
MultiTHUMOS [28] 32.33 32.50 32.64 32.60 32.63

# Queries (Nq) 10 25 40 55 70
Charades [20] 14.55 15.62 15.27 14.26 13.58

# Queries (Nq) 20 40 60 80 96
TSU [6] 18.56 20.19 20.59 20.73 20.81

Table 7. Ablation study on the number of decoder queries.

LE LD 0.1 0.3 0.5 0.7 0.9 Avg.

5 5 51.90 45.52 33.54 19.02 3.83 31.25
6 3 52.69 46.66 34.52 19.47 3.75 31.93
6 4 53.39 47.42 35.19 19.93 3.88 32.52
6 5 53.42 47.41 35.18 20.18 4.02 32.64
6 6 52.95 46.30 34.06 19.47 4.30 31.90

Table 8. Ablation study on the number of encoder and decoder
layers on MultiTHUMOS.

Method GPU Param(M) GMACs Latency mAP

ActionFormer A100 27.90 45.3 224ms 29.6
TriDet A100 15.25 43.7 167ms 30.7

DualDETRq80 TITAN Xp 21.77 66.3 65ms 32.3
DualDETRq150 TITAN Xp 21.77 80.3 69ms 32.6

Table 9. Inference efficiency.

there is a growing opportunity to explore efficient end-to-
end approaches for action detection tasks.
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Figure 7. Qualitative results under high-overlap scenarios. The videos are from the MultiTHUMOS dataset.
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