FlowlE: Efficient Image Enhancement via Rectified Flow

Supplementary Material

In the supplementary material, we provide a deeper ex-
ploration of insights and findings. In Section A, we present
more implementation details regarding the training and
evaluation of FlowlE. Section B delves into further discus-
sions through a combination of quantitative analyses and
qualitative experiments. In Section C, we show additional
visualization results for Blind Face Restoration (BFR) and
Blind Image Super-Resolution (BSR). Furthermore, Sec-
tion D extends our investigations to encompass tasks such
as single image deraining and dehazing. The source code
for FlowlE is also provided in the zip file.

A. Detailed Implementations

To initialize our path estimator vy, we employ the text-
to-image pretrained Stable Diffusion (SD 2.0-Base) [17],
which offers ample generative priors suitable for various
enhancement tasks. The input image & € R3*512x512 jg
encoded into the latent code z € R**64x64 by the trained
VQGAN. During the training of all tasks, we resize the in-
put images to 512 x 512. For the images smaller than this
size, we upsample them with the short side enlarged to 512
and crop them with a fixed-size bounding box. We train
our FlowlE with 8 NVIDIA RTX 3090 GPUs. To maintain
the pre-trained capability of the diffusion model, we utilize
the LoRA [7] approach to unfreeze the linear layers of the
cross-attention blocks in vy. We find that the small trainable
parameters with a LoRA rank of 4 can significantly unleash
the generative priors within the diffusion model and allow
adaptation to various tasks. Another benefit of the partially
unlocked models is preventing overfitting of the large dif-
fusion model. To measure the throughput of FlowIE and
other methods, we conduct evaluation experiments on the
same dataset and using a single 3090 GPU.

B. More Discussions

Many-to-one mapping and result diversity. Compared
with text-to-image generation, image enhancement tasks
like BFR have more deterministic targets. Therefore, we
employ the ‘many-to-one’ strategy for FlowlE during train-
ing to learn a direct mapping from noise to real data. How-
ever, it’s crucial to clarify that FlowIE, being a probabilis-
tic model like diffusion models, inherently yields diverse
outcomes, especially for the inpainting task. As illustrated
in Figure A, given the masked input (Col.1) and different
initial noise zy, FlowlE generates various facial features
(Col.2-5), encompassing variations in the shape of the nose,
ears, and texture of the hair. Unlike rigid ‘many-to-one’
mapping often employed in GAN-based methods during in-
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Figure A. Diverse results of FlowIE. Our framework can generate
various results with different initial noises.
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Figure B. The visualization of the inference process. FlowlE
establishes straight-line paths from random noise to clean images.
Through mean value sampling, we achieve clearer and more de-
tailed results in fewer steps compared to the Euler method.

ference, FlowlE embraces the generative capacity of diffu-
sion models and enjoys the diversity of plausible results.
Visualization of different paths We showcase the visual-
ization of each step in our inference process. Along the
straight-line path, FlowlE adeptly generates high-quality
(HQ) images from noise in less than 5 steps. As depicted
in Figure B, the mean value sampling consistently yields
clearer and more detailed results in fewer steps compared
to the Euler method, highlighting its efficacy in enhancing
the quality of the generated images.

About starting from 74(z1q). Since FlowlE predicts the
path from random noise, switching the starting point to the
coarse result 7,(zr,q) is indeed reasonable. Tuning and
evaluation on the BFR task (shown in Table A) indicate a
slightly worse FID compared with FlowIE. We attribute this
result to the adjustment’s reliance on initial results over pre-
trained diffusion priors.

About artifacts in the first step. We acknowledge that ex-
treme artifacts in the first step may result in failure cases.
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Figure C. Qualitative comparisons on CelebA-Test. FlowIE produces high-quality results with rich details and maintains high identity
similarity, even when confronted with severely degraded inputs, while previous methods exhibit visible artifacts or inconsistent faces.
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Figure D. Qualitative comparisons on real-world faces. Our approach demonstrates credible enhancements on real-world faces, deliver-
ing high-fidelity and visually satisfying results. Compared to other methods, FlowIE showcases robustness in front of challenging cases.

Table A. Ablation study about the starting point. Latent initia-
tion from zo = 74 (2zLq) leads to worse FID.

Method FIDJ
CelebA  LFW
DiffBIR [11] 20.19 39.61
20 = T¢ (ZLQ) 19.87 38.80
FlowlE 19.81 38.66

In Figure E, the input undergoes challenging degradation
(16x downsampling). Compared to GAN-based methods
like BSRGAN [28] which introduce many artifacts and blur,
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Figure E. Failure case of FlowIE. Our framework may give un-
satisfying results when facing severe degradation.

FlowlE generates a cleaner image. However, the final result
may still exhibit unrealistic eyes due to initial step artifacts.



Figure F. Qualitative results in larger resolution. The proposed
FlowlE consistently delivers visually captivating results at higher
resolutions.

About larger resolution. FlowlE demonstrates excellent
scalability to process larger images. We can replace the
original diffusion model (SD 2.0-base) with an enlarged
version (SDXL) which generates 1024 x 1024 images by
default and tune the FlowlE framework following the pro-
posed method. As shown in Figure F, despite the limitation
in training time, we still obtain satisfying outcomes with
higher resolution (1024 x 1024).

Comparisons with diffusion models. Our proposed
FlowIE mainly capitalizes on the powerful generation ca-
pability within the pre-trained diffusion model, which has
demonstrated its versatility in various visual tasks. For
example, DDVM [18] explicitly underscores the effective-
ness of pre-trained priors in diffusion models for monocular
depth estimation and SDEidt [14] focuses on image editing
tasks like stroke-based editing. Additionally, [24] success-
fully achieves rapid image sampling by employing multi-
modal denoising distributions and conditional GANs. Com-
pared with these works, our FlowIE primarily harnesses the
generative prior in diffusion models and employs a condi-
tioned flow-based strategy to accelerate the sampling.

C. More Qualitative Comparisons

In this section, we provide additional visual comparisons
on BFR and BSR with state-of-the-art methods. Our frame-
work reliably demonstrates its ability to deliver robust and
satisfying results in these challenging tasks, showcasing its
efficacy across diverse image enhancement scenarios.
Blind Face Restoration. We conduct qualitative com-
parisons on both synthetic CelebA-Test [13] and in-the-
wild LFW-Test [20], CelebChild-Test [20] and WIDER-
Test [29]. Our comparisons involve recent state-of-the-
art methods, including GPEN [25], GCFSR [6], GFP-
GAN [20], VQFR [5], RestoreFormer [23], DMDNet [9],
CodeFormer [29] and DiffBIR [11]. Visual results pre-
sented in Figure C and Figure D demonstrate that our
FlowlE consistently produces visually pleasing outcomes
on both synthetic and real-world datasets, affirming its ef-
fectiveness and robust performance in diverse scenarios.
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Figure G. Single image Deraining via FlowlE. Our framework
adeptly identifies the rainy layers and proficiently restores the orig-
inal images without complex task-specific designs.
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Figure H. Single image dehazing via FlowIE. Our framework ef-
fectively eliminates haze, enhancing the overall clarity of the im-
ages.

Blind Image Super-Resolution. For BSR, we also present
additional results on RealSRSet [1] and our established
Collect-100 dataset. We compare FlowlE with cutting-
edge methods, including GAN-based Real-ESRGAN+ [21],
BSRGAN [28], SwinIR-GAN [10], FeMaSR [2] and
diffusion-based DDNM [22], GDP [3] and DiffBIR [11].
Figure I vividly illustrates the efficacy of FlowlE in generat-
ing visually appealing images with a commendable balance
between realism and clarity.

D. More Extended Tasks

To showcase the versatility of our framework, we extend
FlowlE to more tasks, specifically single image deraining
and dehazing. The adaptation for these tasks involves a fine-
tuning process with 15K steps on the respective datasets.
Notably, we only use the single MSE loss for all tasks.

Deraining. We utilize RainTrainH [26], RainTrainL [26]
and Rain12600 [4] for training and evaluate our framework
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Figure I. Qualitative comparisons on the real-world images. FlowIE successfully enhances the LQ images through simultaneous up-
sampling, denoising, and deblurring, and provides rich details from the generative knowledge, leveraging generative knowledge to deliver

high-quality outcomes with rich details.

on Rain-100L dataset [27]. We compare our results with
PReNet [16] and RCDNet [19]. As shown in Figure G,
FlowlE effectively separates the rainy layers and recon-
structs the original clean images.

Dehazing. We employ the indoor part of the RESIDE
dataset [8] for training and evaluate our framework on its
test split. We compare the results with FFA-Net [15] and
GridDehazeNet [12]. FlowlE demonstrates successful haze
removal and enhances the clarity of the original images, as
shown in Figure H.
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