
Supplementary Material for Infrared Adversarial Car Stickers

Xiaopei Zhu1 Yuqiu Liu2 Zhanhao Hu3 Jianmin Li4 Xiaolin Hu4,5,6*

1School of Integrated Circuits, Tsinghua University, Beijing, China
2Department of Technology, Beijing Forestry University, Beijing, China

3Department of Electrical Engineering and Computer Sciences, UC Berkeley, California, USA
4Department of Computer Science and Technology, Institute for Artificial Intelligence,

BNRist, Tsinghua University, Beijing, China
5THBI, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China

6Chinese Institute for Brain Research (CIBR), Beijing, China
{zxp18}@mails.tsinghua.edu.cn

{liuyuqiu99, zhanhaohu.cs}@gmail.com
{lijianmin, xlhu}@mail.tsinghua.edu.cn

1. Supplementary Video 1
Watch “SM Video 1 Sticker Manufacture.mp4” for physical
implementation process for adversarial real car stickers.

2. Supplementary Video 2
Watch “SM Video 2 Model Car Attack.mp4” for the demo
of physical attacks on model cars.

3. Supplementary Video 3
Watch “SM Video 3 Real Car Attack.mp4” for the demo of
physical attacks on real cars.

4. Details for Building a 3D Infrared Car
Model

Building a 3D infrared car model requires taking infrared
photos at different viewing angles. We used a FLIR T560
infrared camera mounted on a tripod. The distance between
the tripod and the car is about 1m, and height of tripod
can be adjusted from 1m to 2m. The camera lens could
be rotated horizontally or tilted vertically to capture images
from different angles. We captured infrared photos from
five typical angles, including a side view (for creating tex-
tures of the car doors, side windows, tires, etc.), a front view
(for creating textures of the car front), a front view with a
downward angle (for creating textures of the front windows,
hood, the front half of the roof, etc.), a horizontal back view
(for creating textures of the car rear), and a back view with a
downward angle (for creating textures of the rear windows,
rear hood, the rear half of the roof, etc.).

*Corresponding author.

Control points 𝐶(𝑡)

Mesh vertices 𝑉(𝑡)

Figure S1. Schematic diagram of 3D control points-based smooth-
ing.

Next, we used Photoshop software to crop the captured
infrared photos into different parts, such as doors, windows,
etc. These cropped images were then pasted onto the cor-
responding parts of the car’s faces map (Figure 2(b)). It’s
important to note that the cropped images may not perfectly
align with the corresponding parts in the faces map. In such
cases, we utilized the distortion function in Photoshop to
slightly deform the cropped infrared images, ensuring a bet-
ter fit with the corresponding parts on the faces map.

One special part is the roof. Limited by the capturing
equipment, the photos of the car roof often had a large tilt,
and sometimes the complete car roof was not captured in
one shot. First, we utilized the deformation function in Pho-
toshop to deform the roof photo to resemble a top-down
view. If the deformed roof photo wasn’t complete, we re-
peated the deformation process with an infrared photo cap-

1



Figure S2. Different car models and their textures. (a) Clean. (b) Random shape. (c) AIP. (d) UAP. (e) Ours.

tured from another angle. Subsequently, we stitched the two
photos together to obtain a complete image of the car’s roof
texture.

Through the above steps, we can use the captured in-
frared photos to fill the faces map of the car (Figure 2(b)),
obtaining the infrared texture map of the car (Figure 2(c)),
which could be used to render the 3D car model. The ren-
dered infrared car model is shown in Figure 2(d) .

5. Details for 3D Control Points-Based
Smoothing

If we directly optimize the vertices coordinates V of the
mesh Madv , many “peaks” will appear on the mesh surface,
which makes the shadow Sadv very complex and brings dif-
ficulties to the physical implementation. Inspired by the
Gaussian smoothing and spline interpolation method, we
propose a smoothing algorithm for 3D mesh vertices. We
use a set of 3D control points C as anchor points, and com-
pute the offset ∆V of the mesh vertices V by the weighted
average of the offsets ∆C of the control points C. The off-
sets indicate the difference between the current coordinates
and the initial coordinates.

Specifically, the offsets of the mesh vertices and control
points at t-th time step are defined by

∆Vi(t) = Vi(t)− Vi(0), (1)
∆Ci(t) = Ci(t)− Ci(0), (2)

respectively. Assuming that there are Nv mesh vertices and
Nc control points, the offset of the i-th mesh vertices at the
t-th time step is computed by

∆Vi(t) =

Nc∑
j=1

wij∆Cj(t). (3)

The weight

wij =
exp(−D(Vi(0),Cj(0))

2

σ2 )

Γj
, (4)

Γj =

Nv∑
i=1

exp(−D(Vi(0), Cj(0))
2

σ2
), (5)

where D(·, ·) denotes the Euclidean distance function. The
weight wij increases as the distance between the i-th ini-
tial mesh vertex and the j-th initial control point becomes
smaller. At each step t, the coordinate of the i-th mesh ver-
tex is then calculated by

Vi(t) = Vi(0) + ∆Vi(t). (6)

We denote the above operation by Θ and have

V (t) = Θ(C(t)). (7)

Figure S1 shows the schematic diagram of 3D control
points-based smoothing method.

6. Details for Attacking Faseter RCNN in the
Digital World

We simulated N = 5 adversarial patterns S
(i)
adv, i =

1, 2, ...5, with one pasted on the car roof and two each on
the car doors (since the car doors are symmetrical, the pat-
terns on the left and right doors are identical), one on the car
hood, and one on the car rear. These five adversarial pat-
terns S(i)

adv, i = 1, 2, ...5, were the shadows of five adversar-
ial meshes M (i)

adv, i = 1, 2, ...5. The mesh shadowing angles
φ(i), i = 1, 2, ...5 were all initialized to 0. Each adversarial
mesh Madv is initialized as a standard sphere (with 15,360



vertices V and 15,360 control points C), where the coordi-
nates of control points C were initialized as the same as that
of mesh vertices V . We established a Cartesian coordinate
system centered at the midpoint of the infrared car’s texture
map Torigin, where the left and top of Torigin represented
the positive directions of the x and y axes, respectively, and
defined the side length of Torigin as 2. The pasting posi-
tions P =

{
p(1), ..., p(5)

}
of S(i)

adv, i = 1, 2, ...5, were ini-
tialized as [−0.38, 0.6], [−0.38, 0.1], [0.62, 0.5], [0.62, 0],
[0.62,−0.5]. These initial coordinates corresponded to the
centers of different parts of the car, for example, [0.62, 0]
represented the center of the car roof. Using the Equation 7
(main submission), we obtained the car’s texture map Tadv

with adversarial shadows.
Next, we employed the differentiable renderer R pro-

vided by Pytorch3D to render Tadv onto the Mercedes-Benz
car model, resulting in the rendered infrared images Iadv.
The parameters θ of the renderer R were set such that, in
each iteration, the virtual camera’s horizontal angle from
the car ranged from 0 to 360 degrees with random varia-
tions, the pitch angle from the car varied from 0 to 90 de-
grees with random variations, and the distance from the car
ranged from 1m to 8m with random variations, simulating
various viewpoints of a real car. Subsequently, we inputted
the rendered images into Faster R-CNN and computed the
loss function L according to Equation 10 (main submis-
sion). The weights w1, w2, w3, and w4 in loss function
L were 0.01, 1.0, 1.0, 0.1, respectively. We updated the op-
timization parameters

(
C(i), P (i), φ(i)

)
, i = 1, 2, ...5, us-

ing the backpropagation algorithm. We utilized the Adam
optimizer with a learning rate of 0.003. Optimization was
performed on a single A100 GPU for five epochs, with
1491 iterations per epoch, taking approximately 2.5 hours

R
et

in
a

Origin Random Ours

Target detected Target undetected

AIP UAP

L
ib

ra
C

as
ca

d
e

S
S

D

Figure S3. Examples of detection results of more detectors for tar-
get cars with different textures. The numbers above the red bound-
ing boxes are the object confidence scores, with a threshold of 0.6.

to complete. After optimization, we obtained the adversar-
ial shadow patterns (Figure S2(e), top), and the rendered car
with adversarial shadow patterns (Figure S2(e), bottom).

After that, we evaluated the attack effectiveness of the
adversarial shadow patterns. For a fair comparison, we em-
ployed the original car pattern (without any sticker, Fig-
ure S2(a)) and random shape patterns (manually painted us-
ing Photoshop software, Figure S2(b)) as control patterns.
These patterns were rendered onto the same car model, and
the resulting images were inputted into Faster R-CNN.

7. Examples of Attacking More Detectors

Figure 5 shows one set of typical examples of detection re-
sults of Faster RCNN, YOLOv3, Deformable DETR for tar-
get cars with different textures. We added typical examples
of detection results of RetinaNet, Cascade RCNN, Libra
RCNN, and SSD in Figure S3.

8. Details for Ablation Study

To evaluate the effectiveness of the 3D control points-based
mesh smoothing algorithm (CMS) and a set of smoothing
losses (SMLS), we performed ablation experiments. The
loss function settings include using only Ldet, using Ldet

and CMS, using Ldet and SMLS, and using Ldet, CMS, and
SMLS. Other optimization settings were consistent with
Section 6 in Supplementary Material. Through optimiza-
tion, we obtained 3D adversarial meshes and 2D adversarial
patterns using different loss functions, as shown in Figure
S4. Note that in Figure S4 we show a typical adversarial
mesh (of the 5 adversarial meshes) and its corresponding
shadow for each case for convenience.

We conducted a subjective evaluation on the smooth-
ness scores of the 3D adversarial meshes and 2D adver-
sarial patterns. The experiments were approved by the In-
stitutional Review Board (IRB). Scores ranged from 1 to
10, with higher scores indicating smoother results. We in-
vited 10 volunteers (Age 22-28, 5 male, 5 female) to rate
and calculated the average and variance. We also evaluated
the physical implementation time of 2D adversarial patterns
optimized with four combinations of loss functions as men-
tioned above. Two volunteers manufactured the adversar-
ial stickers according to the different optimized patterns.
We recorded the implementation time of different stickers
as shown in Table S1. The results indicate that both CMS
and SMLS improved the smoothness of adversarial meshes
and patterns, and their combination was better. Besides,
these methods effectively reduced the physical implemen-
tation time of adversarial patterns. We also found that there
was a trade-off between smoothness and ASR. Improving
the smoothness of adversarial meshes and patterns would
decrease the ASR of adversarial patterns but would save
physical implementation time of these adversarial patterns.



Table S1. Ablation study

Setting
Metrics

3D mesh 2D shadow ASR (%) Smoothness(1-10) Implementation time (h)

Ldet Fig S4(a), top Fig S4(a), bottom 98.46 2.6±1.0 around 2.5
Ldet+CMS Fig S4(b), top Fig S4(b), bottom 96.71 4.8±1.0 around 1.6
Ldet+SMLS Fig S4(c), top Fig S4(c), bottom 96.98 6.1±0.7 around 1.1

Ldet+CMS+SMLS Fig S4(d), top Fig S4(d), bottom 96.31 7.7±1.1 around 0.8

Figure S4. Typical 3D adversarial mesh and its 2D adversarial shadow under different optimization settings. (a) Ldet (b) Ldet+CMS (c)
Ldet+SMLS (d) Ldet+CMS+SMLS

8.1. Details for Exploring the Interpretability of the
Attack

To gain deeper insights into our attack methods, we utilized
the GradCAM [7] technique to analyze the changes in net-
work attention maps before and after the attack. We em-
ployed the pytorch-grad-cam [2] library and extracted at-
tention features using a ResNet50 model, which is the same
architecture as the backbone of our Faster R-CNN model.
The target class was set as “car”. Figure S5 illustrates the

Figure S5. The attention map generated by GradCAM (a) before
and (b) after our attack.

attention maps before and after the attack. After our attack,
the network’s attention to cars significantly weakens or dis-
appears, potentially leading to incorrect judgments. This, to
some extent, explains the effectiveness of our method.

9. Details for Comparison with 2D Optimiza-
tion Methods

We extended the previous 2D infrared model car attack
methods [8, 9] to our 3D car model. We generated adver-
sarial car textures on our car model based on the original
papers [8, 9] and codes. As these two methods need to op-
timize the adversarial patterns for each image, we sampled
4 images of our 3D infrared car model from four typical
viewing angles, including the front view (horizontal angle
0 degree, pitch angle 0 degree), side view (horizontal angle
90 degree, pitch angle 0 degree), top view (horizontal an-
gle 0 degree, pitch angle 90 degree), back view (horizontal
angle 180 degree, pitch angle 0 degree). Following the set-
tings and hyper-parameters in the original papers [8, 9] and
codes, we optimized the adversarial patterns for each im-
age, and then pasted the adversarial patterns onto the cor-



Table S2. Defense Methods

Defense Methods ASR ASR drop by
No defense 96.31% 0.00%

Adversarial Training 88.83% 7.48%
PixelMask 94.81% 1.50%

Bit squeezing 90.62% 5.69%
JPEG compression 93.91% 2.40%

Total variation minimization 92.12% 4.19%

responding parts in the texture map (Figure S2(a), top) of
our 3D car model. For example, we optimized the adversar-
ial patterns based on the infrared image sampled from the
front view, and after that we pasted the adversarial patterns
on the textures of the car front in the texture map. Then we
obtained the adversarial car texture of AIP (Figure S2(c)),
and the adversarial car texture of UAP (Figure S2(d)).

10. Details for Adversarial Defense

We tested five adversarial defense methods to defend our
attack methods in the digital world, including adversarial
training [3], PixelMask [1], Bit squeezing [10], JPEG com-
pression [4] and Total variation minimization [4]. For ad-
versarial training, we used the data augmentation method.
The adversarial training data contains clean images and ad-
versarial images collected from real world, and the ratio of
adversarial images to clean images was 1:9. For PixelMask,
we used a 20×20 pixel mask, which was applied to erase the
adversarial car texture at random positions. For Bit squeez-
ing, we used the Numpy [5] library to reduce the 8-bit ad-
versarial images to 7-bit depth. For JPEG compression, we
used the JpegCompression module in the Adversarial Ro-
bustness Toolbox [6] library, and set the compression rate
to 90%. For Total Variance Minimization, we used the To-
tal Variance Minimization module in Adversarial Robust-
ness Toolbox [6] library. Other optimization settings were
the same as that of Section 4.4 in the main submission. We
used the adversarial texture shown in Figure S2(e) to test
the effectiveness of these defense methods. The results are
shown in Table S2.

The results show that although these methods had a cer-
tain defense effect, the ASR of our method still reached
88.83%-94.81% after adding defense, which indicates that
our method is a powerful attack method.

References
[1] Akshay Agarwal, Mayank Vatsa, Richa Singh, and Nalini

Ratha. Cognitive data augmentation for adversarial defense
via pixel masking. Pattern Recognition Letters, 146:244–
251, 2021. 5

[2] Jacob Gildenblat and contributors. Pytorch library for

cam methods. https://github.com/jacobgil/
pytorch-grad-cam, 2021. 4

[3] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples. In Int.
Conf. Learn. Represent., 2015. 5

[4] Chuan Guo, Mayank Rana, Moustapha Cissé, and Laurens
van der Maaten. Countering adversarial images using input
transformations. In Int. Conf. Learn. Represent., 2018. 5

[5] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt,
Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric
Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith,
Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van
Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández
del Rı́o, Mark Wiebe, Pearu Peterson, Pierre Gérard-
Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser,
Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant.
Array programming with NumPy. Nature, 585(7825):357–
362, 2020. 5

[6] Maria-Irina Nicolae, Mathieu Sinn, Minh Ngoc Tran, Beat
Buesser, Ambrish Rawat, Martin Wistuba, Valentina Zant-
edeschi, Nathalie Baracaldo, Bryant Chen, Heiko Ludwig,
Ian Molloy, and Ben Edwards. Adversarial robustness tool-
box v1.2.0. CoRR, 1807.01069, 2018. 5

[7] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das,
Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra.
Grad-cam: Visual explanations from deep networks via
gradient-based localization. In Proceedings of the IEEE in-
ternational conference on computer vision, pages 618–626,
2017. 4

[8] Xingxing Wei, Yao Huang, Yitong Sun, and Jie Yu. Uni-
fied adversarial patch for cross-modal attacks in the physical
world. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 4445–4454, 2023. 4

[9] Xingxing Wei, Jie Yu, and Yao Huang. Physically adver-
sarial infrared patches with learnable shapes and locations.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 12334–12342, 2023.
4

[10] Weilin Xu, David Evans, and Yanjun Qi. Feature squeezing:
Detecting adversarial examples in deep neural networks. In
25th Annual Network and Distributed System Security Sym-
posium, NDSS, 2018. 5

https://github.com/jacobgil/pytorch-grad-cam
https://github.com/jacobgil/pytorch-grad-cam

	. Supplementary Video 1
	. Supplementary Video 2
	. Supplementary Video 3
	. Details for Building a 3D Infrared Car Model
	. Details for 3D Control Points-Based Smoothing
	. Details for Attacking Faseter RCNN in the Digital World
	. Examples of Attacking More Detectors
	. Details for Ablation Study
	. Details for Exploring the Interpretability of the Attack

	. Details for Comparison with 2D Optimization Methods
	. Details for Adversarial Defense

