
Is Vanilla MLP in Neural Radiance Field Enough for Few-shot View Synthesis?

Supplementary Material

In Sec. 7, we provide a detailed analysis of how mi-MLP
works. Sec. 8 introduces more experimental details, includ-
ing datasets, metrics, implementation details, and methods
used for comparison. We also report the results of using
dropout to avoid overfitting in Sec. 9 and the extensions of
mi-MLP to the task of 3D generation in Sec. 10. The limi-
tations and future works are illustrated in Sec. 11.

7. How mi-MLP Works?
As illustrated in Sec. 4.1.1, to mitigate the overfitting issue
that usually occurs in few-shot view synthesis, we incorpo-
rate inputs into each layer of the MLP, which is denoted as:

f i = ϕi(f i−1, γL(x)), f1 = ϕ1(γL(x)), (13)

where ϕi is the i-th (i ≥ 2) layer of the MLP, f i is the cor-
responding output feature, x is the input 5D coordinate and
γL(x) represents the endoded input embeddings obtained
by Eq. 2.

Intuitively, during the early stage of training, with a
common MLP initialization, Eq. 13 encourages a smaller
amplitude of gradient for the shallower layer compared to
that for the deeper layer, where the deeper layers (i.e., lay-
ers close to the outputs) are updated with large gradients
while the shallower layers are updated with extremely small
ones. This implies that the model capacity is restricted
at the start of training, which helps prevent the model
from memorizing input views and thus avoids overfit-
ting. However, as the number of network parameters
remains unchanged, the total capacity of the model is
preserved for more detailed rendering during the later
stage of training.

Specifically, assuming γL(x) ∈ Rd1×1, f i ∈ Rd2×1, the
bias vector and weight matrix of ϕi are bi ∈ Rd2×1 and
wi = (w1

i ,w2
i , . . . ,wd2

i)T respectively, where wj
i = (wj0

i ∈
R1×d1 ,wj1

i ∈ R1×d2)T . Thus Eq. 13 is equivalent to

ϕj
i (γL(x)) = ϵ{wj0

i · γL(x) + wj1
i · ϕi−1(γL(x)) + bi},

(14)

where ϕj
i is the j-th element of f i, ϵ denotes the activation

fuction whose default setting is ReLU.
Assuming that the loss function is denoted as L, then

∥ ∂L
∂wj0

i

∥1 = ∥ ∂L
∂ϕj

i

· ∂wj0
i · γL(x)
∂wj0

i

∥1 = ∥ ∂L
∂ϕj

i

∥1 · ∥γL(x)∥1.

(15)

∥ ∂L
∂wj1

i

∥1 = ∥ ∂L
∂ϕj

i

· ∂wj1
i · ϕi−1

∂wj1
i

∥1 = ∥ ∂L
∂ϕj

i

∥1 · ∥ϕi−1∥1.

(16)

∥ ∂L
∂wj0

i−1

∥1 = ∥ ∂L
∂ϕj

i

· ∂wj1
i · ϕi−1

∂ϕj
i−1

·
∂ϕj

i−1

∂wj0
i−1

∥1

= ∥ ∂L
∂ϕj

i

∥1 · ∥
∑

wj1
i ∥1 · ∥γL(x)∥1.

(17)

∥ ∂L
∂wj1

i−1

∥1 = ∥ ∂L
∂ϕj

i

· ∂wj1
i · ϕi−1

∂ϕj
i−1

·
∂ϕj

i−1

∂wj1
i−1

∥1

= ∥ ∂L
∂ϕj

i

∥1 · ∥
∑

wj1
i ∥1 · ∥ϕi−2∥1.

(18)

As a result,

∥ ∂L
∂wi

∥1/∥
∂L

∂wi−1
∥1 =

1

d2

d2∑
j=1

∥ ∂L
∂wj

i

∥1/∥
∂L

∂wj
i−1

∥1

=
1

d2

d2∑
j=1

∥(∂L
∂wj0

i

∥1 +
∂L
∂wj1

i

∥1)/(∥
∂L

∂wj0
i−1

∥1 + ∥ ∂L
∂wj1

i−1

∥1)

=
1

d2

d2∑
j=1

∥γL(x)∥1 + ∥ϕi−1(γL(x))∥1
∥
∑

wj1
i ∥1 · {∥γL(x)∥1 + ∥ϕi−2(γL(x))∥1}

.

(19)

Accordingly, during the early stage of training, if the
MLP is initialized appropriately, where ∥

∑
wj1
i ∥1 ∈ (0, 1]

and ∥ϕi−1(γL(x))∥1 ≈ ∥
∑

wj1
i ∥1 · ∥ϕi−2(γL(x))∥1, then

∥ ∂L
∂wi

∥1/∥ ∂L
∂wi−1

∥1 ≥ 1 holds true in a high probability.
In practice, we find that the default initialization pro-

vided by PyTorch for MLP can meet the requirements,
where the weight matrix is uniformly initialized based on
the dimension of the output feature. Specifically, taking wi

as an example, since the dimension of its output feature is
d2, each element of wi is sampled from the following uni-
form distribution:

wi ∼ U(− 1√
d2

,
1√
d2

). (20)

On account that E[wi] = 0, ∥
∑

wj1
i ∥1 ≈ ∥d2 ·E[wi]∥1 ≈ 0,

which demonstrates that ∥
∑

wj1
i ∥1 ∈ (0, 1] holds.

Based on Eq. 14, ϕi−1(γL(x)) = ϵ(w0
i−1 ·γL(x)+w1

i−1 ·
ϕi−2(γL(x))+bi), where w0

i−1 ∈ Rd2×d1 , w1
i−1 ∈ Rd2×d2 .

For an easier illustration and demonstration, we omit the
influence of ϵ, bi and w0

i−1, thus

∥ϕi−1(γL(x))∥1 ≈ ∥w1
i−1 · ϕi−2(γL(x))∥1. (21)

Because each element in w1
i−1 is sampled from the same

distribution, without loss of generality, we assume that

∑
w11

i =
∑

w21
i = · · · =

∑
wd21

i . Consequently,

∥w1
i−1 · ϕi−2(γL(x))∥1 = ∥

∑
wj1
i ∥1 · ∥ϕi−2(γL(x))∥1.

(22)

According to Eq. 21 and Eq. 22, when the MLP is initial-
ized by Eq. 20, Eq. 19 can be conveted into the following
formulation:

∥ ∂L
∂wi

∥1/∥
∂L

∂wi−1
∥1

=
1

d2

d2∑
j=1

∥γL(x)∥1 + ∥ϕi−1(γL(x))∥1
∥
∑

wj1
i ∥1 · {∥γL(x)∥1 + ∥ϕi−2(γL(x))∥1}

=
1

d2

d2∑
j=1

∥γL(x)∥1 + ∥
∑

wj1
i ∥1 · ∥ϕi−2(γL(x))

∥
∑

wj1
i ∥1 · {∥γL(x)∥1 + ∥ϕi−2(γL(x))∥1}

.

(23)

Since ∥
∑

wj1
i ∥1 ∈ (0, 1], ∥ ∂L

∂wi
∥1/∥ ∂L

∂wi−1
∥1 ≥ 1 holds,

which demonstrates that with per-layer inputs incorpora-
tion, the amplitude of gradient of the shallow layer will be
smaller than that of the deeper layer during the early stage
of training.

8. Experimental Details
8.1. Datasets

We perform experiments on a wide range of benchmarks,
i.e., Blender [21], LLFF [20], and Shiny [46], to demon-
strate the effectiveness of our proposed method.

Blender. The Blender dataset is comprised of 8 object-
centric 360◦ inward-facing scenes, each containing 400
views. Following [12], when 8 input views are avail-
able, the images indexed 86, 93, 75, 26, 55, 73, 16, 2 are se-
lected as the input views; when 4 input views are available,
the images indexed 26, 86, 2, 55 are selected as the input
views. For evaluation, the testing images are selected fol-
lowing [50]. The resolution for both training views and test-
ing views is 400× 400.

LLFF. The LLFF dataset consists of 8 real-world
forward-facing scenes. Following [23], for each scene, ev-
ery 8-th view is used as the holdout testing set and the train-
ing images are selected evenly from the remaining views.
The resolution for both training views and testing views is
378 × 504. We report results when 3/6/9 input views are
available.

Shiny. Similar to LLFF, the Shiny dataset also contains
forward-facing scenes, while it is more complex due to its
view-dependent effects such as reflection and refraction.

We choose 6 scenes from the origional Shiny dataset and
2 scenes from the Shiny-extended dataset, where the reso-
lution for each scene is 378× 504. The training and testing
images are sampled following [23].

8.2. Metrics

To measure the performance of our proposed method, we
evaluate the quality of rendered novel views using Peak
Signal-to-Noise Ratio (PSNR), Structural Similarity Index
Measure (SSIM) [45], and Learned Perceptual Image Patch
Similarity (LPIPS) [52]. Additionally, for an easier com-
parison, we also report the average score by calculating the
geometric mean of MSE = 10−PSNR/10,

√
1− SSIM and

LPIPS following [23].

8.3. Implementation details

We implement our approach using the nerf-pytorch code-
base1, with vanilla NeRF as our baseline. For Blender,
the values for L1, L2, and L3 are set to be 2, 6, and
10 respectively; for LLFF and Shiny, the values for L1,
L2, and L3 are set to be 2, 8, and 10 respectively. For
LBR, rays are sampled from extrapolated image space where
px ∈ [−H/2, H +H/2] and py ∈ [−W/2,W +W/2]. For
sampling annealing, we set Nmax = 256, Nstart = 16,
and η = 100. The Color Branch Cθ and Density Branch
Dθ both have 8 layers with 256 neurons per layer. We ap-
ply 50K training iterations for Blender, while 200K train-
ing iterations for LLFF and Shiny. All experiments are per-
formed on a single NVIDIA RTX 3090 GPU with a batch
size of 1024.

8.4. Methods Used for Comparison

To demonstrate the superiority of our proposed method,
we compare it against several baselines, as well as prior-
based and regularization-based methods. For baselines,
we choose vanilla NeRF [21], Mip-NeRF [2], and Ref-
NeRF [39], which are all representative methods for novel
view synthesis. For prior-based methods, following [50],
we choose SRF [7], PixelNeRF [51], and MVSNeRF [4],
where a large dataset is utilized to incorporate learned pri-
ors. We also report the fine-tuning results of these methods
on LLFF and Shiny, which are able to obtain better perfor-
mance. For regularization-based methods, we choose Diet-
NeRF [12], InfoNeRF [14], RegNeRF [23], MixNeRF [33],
as well as FreeNeRF [50], which are state-of-the-art meth-
ods for few-shot view synthesis to date. Notably, since the
pre-trained network used in RegNeRF for appearance regu-
larization is not provided, we only report the results of Reg-
NeRF trained without it.

1https://github.com/yenchenlin/nerf-pytorch

https://github.com/yenchenlin/nerf-pytorch

Figure 9. The rendered novel views and estimated depth map by
Dropout [36] and our proposed method respectively.

Method PSNR↑ SSIM↑ LPIPS↓ Average↓
DietNeRF [12] 23.83 0.859 0.117 0.056
Dropout [36] 23.79 0.875 0.108 0.054

mi-MLP (Ours) 25.50 0.887 0.087 0.043

Table 6. The quantitative results of DietNeRF [12], Dropout [36],
and our proposed mi-MLP respectively.

9. Results of Using Dropout to Avoid Overfit-
ting

As explained in Sec. 5.2, we demonstrate the effectiveness
of our mi-MLP by comparing it with the classical represen-
tative technique, i.e., Dropout [36], which is used to avoid
the overfitting problem.

Concretely, as shown in Fig. 9, for a testing scene ran-
domly selected from the Blender dataset, a direct applica-
tion of Dropout to the NeRF MLP leads to severe artifacts
as well as unreasonable geometry. In contrast, our pro-
posed method can achieve both photorealistic renderings
and clear depth estimation. Quantitatively, as demonstrated
in Tab. 6, Dropout obtains a comparable performance with
DietNeRF [12], while a great performance improvement
can be witnessed by using our mi-MLP.

10. Extensions to 3D Generation

As an important topic in computer vision and graphics,
3D generation can be viewed as an extreme case of few-
shot view synthesis, where only one reference image or
a textual description is available. To demonstrate the po-
tential of our proposed method, we extend it to the task
of Text-to-3D. Specifically, we take the public-available
stable-dreamfusion2 as an example, where we replace the
network structure with our proposed mi-MLP.

2A reimplemented version of DreamFusion [26] by Stable Diffusion

(a) The training process of original stable-dreamfusion.

(b) The training process of combining stable-dreamfusion with our pro-
posed mi-MLP.

Figure 10. Given the input textual description, i.e., ”a ham-
burger”, (a) illustration of the training process of original stable-
dreamfusion, (b) as well as the training process of modified stable-
dreamfusion whose network structure is replaced by our proposed
mi-MLP.

As shown in Fig. 10, combined with mi-MLP, the stable-
dreamfusion is more robust to different textual descrip-
tions, where reasonable results can be generated. In con-
trast, sometimes the original stable-dreamfusion falls into
a degradation solution, generating nothing but pure colors.
Such an observation shows that mi-MLP is beneficial to
generating diverse 3D assets, which opens up a new direc-
tion for future research.

11. Limitations and Future Works
Our proposed method aims to realize the task of few-
shot view synthesis from the perspective of network struc-
ture, where state-of-the-art performance can be achieved.
However, for objects with complex textures or thin struc-
tures, consistency across different views is hardly guaran-
teed since we impose no constraints on unknown novel
views. To solve this problem, future works include intro-
ducing additional regularization terms or utilizing learned
priors for better novel view synthesis.

Blender-4

Scene chair drums ficus hotdog lego materials mic ship Average

PSNR↑ 23.37 15.17 19.42 24.22 20.31 19.42 20.65 20.49 20.38
SSIM↑ 0.871 0.711 0.840 0.887 0.835 0.834 0.903 0.742 0.828
LPIPS↓ 0.121 0.258 0.129 0.121 0.160 0.124 0.109 0.238 0.157

Average↓ 0.058 0.161 0.083 0.053 0.084 0.083 0.066 0.102 0.084

Blender-8

Scene chair drums ficus hotdog lego materials mic ship Average

PSNR↑ 27.75 19.85 21.49 29.85 25.50 22.33 27.15 23.69 24.70
SSIM↑ 0.936 0.844 0.876 0.948 0.887 0.864 0.949 0.777 0.885
LPIPS↓ 0.055 0.110 0.108 0.051 0.087 0.084 0.045 0.159 0.087

Average↓ 0.028 0.076 0.064 0.022 0.043 0.056 0.026 0.068 0.046

Table 7. The quantitative results for scenes in the Blender dataset with 4/8 input views available.

LLFF-3

Scene fern flower fortress horns leaves orcids room trex Average

PSNR↑ 21.43 19.61 23.38 17.40 16.42 15.70 23.17 20.86 19.75
SSIM↑ 0.675 0.580 0.580 0.486 0.494 0.470 0.880 0.741 0.614
LPIPS↓ 0.273 0.311 0.274 0.424 0.389 0.356 0.161 0.211 0.300

Average↓ 0.103 0.130 0.093 0.176 0.184 0.191 0.064 0.095 0.125

LLFF-6

Scene fern flower fortress horns leaves orcids room trex Average

PSNR↑ 24.44 23.92 27.49 23.36 19.46 17.56 29.36 22.94 23.57
SSIM↑ 0.803 0.800 0.839 0.810 0.738 0.558 0.922 0.831 0.788
LPIPS↓ 0.164 0.130 0.116 0.179 0.177 0.280 0.098 0.164 0.163

Average↓ 0.063 0.061 0.043 0.071 0.100 0.148 0.031 0.069 0.069

LLFF-9

Scene fern flower fortress horns leaves orcids room trex Average

PSNR↑ 25.89 25.94 29.26 25.37 20.95 18.50 29.93 25.33 25.15
SSIM↑ 0.846 0.854 0.883 0.862 0.788 0.615 0.934 0.889 0.834
LPIPS↓ 0.135 0.111 0.092 0.147 0.161 0.259 0.093 0.125 0.140

Average↓ 0.051 0.047 0.033 0.054 0.084 0.131 0.028 0.049 0.055

Table 8. The quantitative results for scenes in the LLFF dataset with 3/6/9 input views available.

Shiny-3

Scene cake crest food giants pasta room seasoning tools Average

PSNR↑ 20.41 14.31 16.06 18.98 14.78 22.37 19.78 19.28 18.24
SSIM↑ 0.439 0.251 0.353 0.509 0.442 0.569 0.506 0.730 0.475
LPIPS↓ 0.395 0.579 0.467 0.407 0.370 0.375 0.456 0.276 0.415

Average↓ 0.139 0.264 0.210 0.153 0.209 0.112 0.149 0.119 0.165

Table 9. The quantitative results for scenes in the Shiny dataset with 3 input views available.

