
The supplementary materials are arranged as follows: In
Sec.A, we illustrate additional method details of the LLaFS
framework. In Sec.B, we provide more implementation de-
tails of our method. In Sec.C, we present more experimen-
tal results to further demonstrate the effectiveness of our
method and designs. In Sec.D, we showcase some examples
of the key steps from input to output of the LLaFS frame-
work.

A. More Method Details of LLaFS
A.1. Complete Input for ChatGPT
In our proposed expert-guide framework for instruction
refinement, we input ChatGPT with a text prompt describ-
ing the task requirements to achieve ambiguity detection
and discriminative attributes generation (see Fig.3 of main
paper for examples). In practice, the complete ChatGPT
input is formed by combining this text prompt with a
format control prompt that explicitly specifies the format
of the output we expect from ChatGPT. When the output
format is unified and fixed, it is easier for us to extract
the ambiguous classes {[a-class]i}Nac

i=1 and discriminative
attributes {[d-att]i}Nd

i=1 from ChatGPT’s feedback automat-
ically and efficiently. Specifically, the complete ChatGPT
inputs for ambiguity detection and discriminative attributes
generation are written as:

Ambiguity Detection: Except for [class], which classes
also have [partial-attributes]? Please answer in the format
of: the following classes also have them: A, B, C, ..., ,
where A, B and C are the name of classes. If there is no
such a class, reply ‘no’.

Discriminative Attributes Generation: What does [class]
look different from [a-classes]? Please answer in the format
of: [class] has A, B, C,..., where A,B and C are noun phrases
to describe the difference of [class] compared to [a-classes].

Discriminative Attributes Generation (from the sec-
ond iteration onwards): Apart from [all-discriminative-
attributes], tell me more differences in appearance between
[class] and [a-classes]. Please answer in the format of:
[class] has A, B, C,..., where A,B and C are noun phrases to
describe more differences of [class] compared to [a-classes]
apart from the given ones.

A.2. More Details of Pseudo-sample-based Curricu-
lum Pretraining

A.2.1 Contour Generation Method

When generating pseudo images, we first randomly gen-
erate a contour within an image region, and the area sur-
rounded by this contour is considered as the foreground
within the target class. This contour is generated as a Bézier
curve constructed by 10 randomly-generated control points.
We will release code to illustrate it in detail.

A.2.2 Details of Pseudo Support-query Generation

The detailed method for generating a support-query pair
can be summarized as the following steps:

Step 1: Support foreground-background partition.
We first randomly generate a contour within an image
region. The area surrounded by this contour is considered
as the foreground within the target class, while the regions
outside the contour are treated as the background. For
the background, we use random contours to divide it into
multiple subregions to simulate the diverse backgrounds
encountered in real images. The number of subregions is
randomly selected from 1 to 5.

Step 2: Support noise filling. We randomly generate
an array msf ∈ R3 within the value range [0, 255], and
utilize it as the RGB mean to generate a Gaussian noise
for filling the support foreground region. Subsequently, for
each subregion of the support background, we randomly
generate another array msb ∈ R3 as the mean to generate
a Gaussian noise for filling this subregion. We constrain
the random generation space of msb to satisfy the distance
constraint ||msb − msf || ∈ [a, b], where a, b are two
adjustable parameters. By adjusting the values of a and
b, we can manage the difference between the foreground
and background within each synthetic image. Sec.A.2.3
illustrates how to adjust them in different pretraining steps.

Step3: Query foreground-background partition by
adjusting from support. To ensure that the support
foreground and query foreground have similar shapes so
that they can reflect the same category, the contour used
to generate the query foreground is adjusted based on that
used for generating the support foreground. Specifically,
we first add a standard Gaussian noise to the ten control
points that are used to generate the support foreground
contour. Subsequently, a noised contour is generated from
these noised control points, followed by the random rota-
tion and scaling between [0.5, 1.5] for further adjustment.
After that, we randomly place the resulted contour in
another position of the image, and the region enclosed by
which is regarded as the query foreground. Finally, we use
the same approach as the support background to partition
the query background region.

Step4: Query noise filling by adjusting from support.
Using the same method as for the support generation, we
randomly generate arrays mqf ∈ R3 and mqb ∈ R3 and use
them as RGB means to generate Gaussian noises, which are
then applied to fill the query foreground and each subregion
of the query background. To ensure that the support fore-
ground and query foreground have similar internal features
so that they can reflect the same category, we constrain the
random generation space of mqf to satisfy the distance con-
straint ||mqf −msf || ∈ [c, d], where c and d are adjustable



parameters. For the background’s mqb, we impose two
constraints to determine its random generation space: (1)
similar to the support background, we constrain the differ-
ence between the query background and query foreground
by ||mqb − mqf || ∈ [a, b]. (2) To ensure that query fore-
ground is the most similar region to the support foreground
in the query image, we further constrain the difference be-
tween the query background and the support foreground to
be greater than the difference between the query foreground
and the support foreground. This is achieved by constrain-
ing ||mqb−msf || > ||mqf−msf ||. Under these constraints,
we randomly generate mqf and mqb to serve as the means
of noises, which are used to fill different regions to obtain
the pseudo query image.

A.2.3 Details of Curriculum Pretraining
During pretraining, we incrementally raise the task’s
difficulty from the following two aspects:

(1) Image understanding. During pretraining, by control-
ling the difference between mean values of different filled
noise, we gradually increase the difference in foreground
between support and query, while reducing the internal dif-
ference between foreground and background within each
image. This makes it more challenging for LLM to perform
few-shot guidance and partition foreground-background ar-
eas as pretraining progresses. We implement this strategy
by adjusting the parameters a, b, c, d introduced in the pre-
vious section.

Specifically, the interval [a, b] constrains the difference
between the foreground and background within an image.
Therefore, during the pretraining process, to reduce this
difference, we gradually decrease the values of a, b until a
eventually reaches 0. Denoting the total number of pretrain-
ing steps as Np (Np = 60K in our experiments), the values
of an and bn at step n are formulated as:

an = a0 −
n.a0
Np

,

bn = an + b0 − a0,
(1)

where a0 and b0 are the hyper-parameters that define the
initial values of a and b in the first step of pretraining.

The interval [c, d] constrains the difference between the
support foreground and query foreground. Therefore, dur-
ing the pretraining process, to enlarge this difference, we
gradually increase the values of c and d, making c to be in-
creased from 0 to cNp as the step progresses from 0 to Np.
In this way, the values of cn and dn at step n are formulated
as:

cn =
n.cNp

Np
,

dn = cn + dNp − cNp ,

(2)

where cNp
and dNp

are the hyper-parameters that define the
final values of a and b in the last step of pretraining.

In this approach, a0, b0, cNp and dNp are predefined
hyper-parameters, which are respectively set to 100, 150,
50, and 100 in our framework. Note that, our experiments
demonstrate that the performance of LLaFS is NOT sensi-
tive to these hyper-parameters. See Sec.C and Table.2 for
details.

(2) Polygon generation. During the pretraining stage, we
randomly provide the coordinates of M points in the in-
struction and let the LLM to predict the coordinates of the
remaining 16−M points. M is decreased by 1 every Np/30
steps in the first half pretraining process with Np/2 steps.
By doing so, we gradually decrease the value of M from
15 to 0. This means that the model receives fewer hints and
is required to predict more vertex coordinates as pretraining
progresses. Consequently, the pretraining difficulty grad-
ually increases, ultimately reaching the task of predicting
all 16 points for segmentation. In the last half pretraining
process, we keep M = 0 for pretraining.

A.2.4 Instruction in Pretraining.
In the pretraining stage, the instruction for inputting into
LLM is written as: For the target object in a query im-
age that has the same class as the support image fore-
ground, output coordinates of a 16-point polygon that en-
closes the object. These points should be arranged in a
clockwise direction and the format of their coordinates is
((x1,y1),(x2,y2),...,(x16,y16)). The coordinate value should
be within [image size]. For support image [pseudo support
image], the foreground is [support foreground]. For the tar-
get object in the query image [pseudo query image], the out-
put should be [masked-gt]. What is the remaining points?
Here, [masked-gt] refers to retaining part of the ground truth
vertices for the 16-point polygon as hints, while replacing
the remaining parts to be predicted with a [mask] token as
in [2].

A.3. Refinement Network

With the instruction as input, the LLM can predict the coor-
dinates of a 16-point polygon. We use 1 to fill the area en-
closed by the polygon and 0 to fill the area outside the poly-
gon. In this way, we obtain a binary segmentation mask de-
noted as M. To rectify the imprecision caused by the poly-
gon representation of object edges, we further introduce a
refinement network to obtain a more refined segmentation
result. As shown in Fig.1, this refinement network follows
a similar structure to Mask2Former [1], comprising a pixel
decoder that progressively increases the sizes of query im-
age feature maps and a masked transformer decoder for op-
timizing the queries. M is used as the mask for the masked
attention in the transformer decoder. Readers can refer to
Sec3.21 of [1] for more details of masked attention.

Note that, compared to the vanilla Mask2Former, our
method does not employ a heavy transformer to construct
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Figure 1. Structure of the refinement network. This network is
lightweight, comprising only 6 convolution layers and 3 attention
layers.

the pixel decoder; instead, we use a simple structure com-
posed of a small number of convolution and bilinear up-
sampling layers. Moreover, we do not iteratively apply the
transformer decoder but use it only once. These modifi-
cations reduce the computational complexity, making our
refinement network to be very lightweight with only 6 con-
volution layers and 3 attention layers. As the output from
the LLM already achieves pretty good results, using this
lightweight network for refinement is completely sufficient.

A.4. Expanding LLM Vocabulary with Coordinate
Tokens

We expand the vocabulary of LLM by adding 384 coordi-
nate tokens denoted as ([c-0], [c-1], ..., [c-383]), where [c-i]
represents the coordinate value i. This design makes our
model more efficient, requiring fewer tokens for the input
and output of LLM.

A.5. Loss Function
Using the Vertex Coordinates outputted by the LLM to con-
struct a binary mask as the input for the refinement network
is a non-differentiable process. Therefore, we employ two
separate loss functions to train the refinement network and
the remaining components of LLaFS, respectively. In this
way, the overall loss can be written as:

L = Lllm + Lref , (3)

where Lllm denotes the loss for training fully-connected
layers and LLM, Lref denotes the loss for training the re-
finement network. For Lllm, we first use bipartite match-
ing to align the LLM-predicted outputs with each object in
the ground truth, then we use cross-entropy loss to compute
Lllm. For Lref , we use cross-entropy loss with online hard
examples mining (OHEM) strategy to compute it.

A.6. Extension to Multi-shot Setting

In the main paper, we introduce LLaFS under the one-shot
setting. The method for the multi-shot setting can be eas-
ily extended from the one-shot method. Specifically, for
each support image, we extract a set of visual tokens and
a region-attribute corresponding table using the method il-
lustrated in main paper. These pieces of information from
all K support images are then incorporated into the follow-
ing instruction for feeding into the LLM: For each object
within the class [class] in an image, output coordinates of
a 16-point polygon that encloses the object. These points
should be arranged in a clockwise direction. The output
should be a tuple in the format of (c1, c2, ..., cn), where cn
is the coordinates for the n-th object and its format should
be ((x1,y1),(x2,y2),. . . ,(x16,y16)). The coordinate value
should be within [image size]. To accomplish this task,
you can refer to the following properties of [class]: [class]
has [attributes]. For example, for image [support image
1], the output should be [support ground truth 1], because
in these regions, [coord]s1 is [cor]1, [coord]s2 is [cor]2...,
[coord]sNr

is [cor]Nr
; ...; for image [support image K],

the output should be [support ground truth K], because
in these regions, [coord]s1 is [cor]1, [coord]s2 is [cor]2...,
[coord]sNr

is [cor]Nr . For image [query image], what is the
output?

B. More Implementation Details
Image Encoder. ResNet50 from the CLIP is used as the
image encoder. In ResNet50, the output features from
stage 3 and stage 4 are resized to 1/8 of the input size and
concatenated with the output features from stage 2. This
combined feature is used as the input for the Q-former and
the pixel decoder in the refinement network.

Q-former. The Q-former has 8 layers with the dimension
of 384. The input for the text transformer in the Q-former
is ‘a photo of [class].’.

Refinement Network. Feature dimension in the refinement
network is 128.

Generation of Region-attribute Corresponding Table.
Generating region-attribute corresponding table requires
additional time due to the use of ChatGPT. To prevent this
additional computation from affecting training efficiency,
we pre-generate the table for each image before training
and include it as part of the dataset that can be directly used



Method PASCAL-5i COCO-20i

Painter [4] 64.5 32.8
SegGPT [5] 83.2 56.1

LLaFS 88.3 64.2

(a) Comparison with SegGPT and
Painter.

Method mIoU

LLaFS 74.2

LLaFS w/o LLM 62.3

(b) Effectiveness of
large language models.

LLM mIoU

Llama2 69.8

Code Llama 74.2

(c) Llama VS Code
Llama as the LLM of
LLaFS.

Method mIoU

LLaFS 74.2

LLaFS w/ curriculum polygon generation in training 74.6

(d) Curriculum polygon generation in the training stage.

Method mIoU

Our Curriculum Strategy 74.2

Masking with a Fixed Ratio λ = 0.25 69.5
Masking with a Fixed Ratio λ = 0.5 71.5
Masking with a Fixed Ratio λ = 0.75 71.1

(e) Curriculum strategy vs fixed-ratio masking for polygon
generation.

Method mIoU

LLaFS 74.2

LLaFS w/o curriculum strategy in image understanding 72.0
LLaFS w/o curriculum strategy in polygon generation 68.1

LLaFS w/o increasing SF-QF difference 72.9
LLaFS w/o reducing F-B difference 72.6

(f) Ablation results of curriculum pretraining. SF, QF, F, B refer to support foreground,
query foreground, foreground, background.

Table 1. More experimental results.

in all experiments. We will release these tables to facilitate
future research.

Data Augmentation. We employ random horizontal
flipping, random noise padding, random cropping, and
random resizing for data augmentation. Note that to prevent
the random cropping from causing the mismatch between
the region-attribute corresponding table and the augmented
support image, we constrain the range of random cropping
when augmenting each support image to ensure that the
foreground region within the target class is not cropped.

Other Training Settings. The batch size is 32. The input
image size is (384, 384).

C. More Experimental Results
Comparison with SegGPT and Painter. In addition
to LLaFS, SegGPT [5] and Painter [4] can also achieve
few-shot segmentation through in-context learning. Fig.1a
presents the comparison results with these methods. For
a fair comparison, we follow SegGPT by combining
different segmentation datasets for training and allow the
categories in training to cover the categories in testing. It
is observed that on both PASCAL-5i and COCO-20i, our
approach can achieve significant advantages. These results
demonstrate that our LLaFS can perform in-context-based
few-shot segmentation more effectively, which is benefited
from the rich prior knowledge contained in LLM and our
carefully-designed fine-grained multi-modal demonstration
examples.

Effectiveness of Large Language Models Thanks to the
rich prior knowledge and powerful few-shot capabilities,
large language models (LLM) play a crucial role in ensuring
the high effectiveness of our LLaFS framework. To demon-
strate this, we remove the LLM from LLaFS and validate
the effectiveness of a few-shot segmentation model that is

composed of the remaining parts of LLaFS.
Specifically, to ensure that the few-shot segmentation

can be performed by only using the remaining components,
we make the following modifications: (1) When extracting
visual tokens from the support image using the Q-former,
the vanilla cross-attention that interacts the learned queries
with support image features is replaced with the masked at-
tention as in [1]. This change ensures that the obtained sup-
port tokens are only related to the foreground region where
the target category is located. (2) After the Q-former, we
add a cross-attention to interact support tokens with query
tokens. This allows query tokens to perceive reference in-
formation from the support foreground. The query tokens
obtained through this step are used as the input query em-
beddings for the transformer decoder in the refinement net-
work, which produces the final segmentation result.

As shown in Table.1b, although the other network
components remain largely unchanged, removing LLM
significantly decreases mIoU by 11.9%. This demonstrates
the crucial role of the LLM in our LLaFS framework.

Llama VS Code Llama. In LLaFS, we employ Code
Llama instead of the vanilla Llama as the large language
model. As shown in Table.1c, the performance of using
Code Llama is 4.4% better than using Llama. This im-
provement could be attributed to the fact that Code Llama
has been fine-tuned on the code generation dataset, so it
is more skilled in generating structured data with fixed
formats, such as the segmentation results in our task.

Ablation of Curriculum Pretraining. In the curriculum
pretraining strategy, we gradually increase the difficulty
of the pretraining tasks from two aspects: (1) image
understanding and (2) polygon generation. As shown in
Table.1f, Not applying the curriculum strategy in each
of these two aspects decreases the mIoU by 2.2% and



(a0, b0, cNp
, dNp

) mIoU

(100, 150, 50, 100) 74.2
(75, 125, 75, 125) 74.0
(125, 175, 25, 75) 74.3
(100, 150, 75, 125) 74.0
(75, 125, 50, 100) 74.0

Table 2. Different settings for hyper-parameters
(a0, b0, cNp , dNp) of the pseudo-sample-based curriculum
pretraining mechanism.

6.1%, respectively. To increase the difficulty of image
understanding, we employ two methods when synthesizing
support-query pairs: (1) increasing the difference between
support foreground and query foreground, and (2) reduc-
ing the difference between foreground and background
within each image. Removing each of these two methods
decreases the mIoU by 1.3% and 1.6%, respectively. These
results demonstrate the effectiveness of our designs in the
approach.

Curriculum Strategy VS Fixed-Ratio Masking for
Polygon Generation. We further test a masked strategy
used in [3–5], in which we randomly provide a fixed
ratio λ of vertex coordinates in the instruction, and let
the model predict the remaining vertices. We test three
values for λ: 0.25, 0.5, and 0.75. As shown in Table.1e,
the performances of all these methods are worse than
our curriculum strategy. These results demonstrate the
effectiveness of our approach, showing the importance of
dynamically increasing the learning difficulty during the
pretraining process.

Curriculum Polygon Generation in the Training Stage.
In addition to employing the curriculum polygon generation
on synthetic images during the pretraining stage, we also
test the further usage of this strategy to realistic data during
the training stage. As shown in Table.1d, we observe that
such a modification cannot significantly improve perfor-
mance. One possible reason could be that the model has
acquired sufficient ability to generate 16-point coordinates
through pretraining on the pseudo samples, so it no longer
requires the continued use of this strategy in the subsequent
training stage.

Hyper-parameter Settings for Pseudo-sample-based
Curriculum Pretraining. As discussed in detail in
Sec.A.2.3, our proposed pseudo-sample-based cur-
riculum pretraining involves four hyper-parameters
(a0, b0, cNp , dNp). The results for different combinations
of these hyper-parameters are presented in Table.2. It can
be observed that our method can consistently achieve excel-
lent and similar results across different (a0, b0, cNp

, dNp
)

settings. These results demonstrate that the performance of
LLaFS is NOT sensitive to these hyper-parameters.

Ablation for Threshold α. We use a hyper-parameter α as
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Figure 2. Using different values of threshold α in Eq.1 of main
paper.

the threshold to construct the region-attribute correspond-
ing table in LLaFS (See Sec.3.2.2 and Eq.1 of main paper
for details). Fig.2 presents the results when using different
values as α. It can be observed that both excessively small
and large values of α can decrease the mIoU. This could
be because an overly small α may result in the incorrect
region-attribute match, while an excessively large α may
lead to missed matches, both of which can adversely affect
the quality of the generated table. When 0.20 ≤ α ≤ 0.22,
the model can consistently achieve stable and high perfor-
mance.

D. Examples of Key Steps from Input to Out-
put

We provide two examples to show the key steps from in-
put to output in LLaFS, including network input, class at-
tributes, region-attribute corresponding table, instruction re-
finement, complete instruction, LLM output, and final re-
sult. These examples are presented in the following 5 pages.
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: [att]6 expressed eyes

: [att]6 expressed eyes: [att]1 a sleek coat 

(1) Input Image

Support Image Query ImageSupport Ground Truth

(2) Class Attributes

What does a horse look like? Please answer in the format of: A horse has A, B, C,...,where 
A,B and C are noun phrases to describe a horse. 

A horse has a sleek coat, a long tail, a muscular body, four legs with hooves, a muzzle, 
expressive eyes.

[att]1: a sleek coat  [att]2: a long tail  [att]3: a muscular body  [att]4: four legs with hooves 
[att]5: a muzzle   [att]6: expressive eyes

Class
Attributes

(3) Region-attribute Corresponding Table

: [att]1 a sleek coat 

(4) Instruction Refinement 

(4.1) Ambiguity Detection

Except for horse, which classes also have (a sleek coat, expressive eyes)? Please answer 
in the format of: the following classes also have them: A, B, C, ..., , where A, B and C are 
the name of classes. If there is no such a class, reply ‘no’.

The following classes also have them: Cheetah, Panther, Jaguar, Leopard, Tiger, Lion, 
Cougar, Domestic Cat.

[a-class]1: Cheetah   [a-class]2: Panther   [a-class]3: Jaguar   [a-class]4: Leopard
[a-class]5: Tiger   [a-class]6: Lion   [a-class]7: Cougar    [a-class]8: Domestic Cat  

Ambiguous
Classes

(4.2) Discriminative Attributes Generation

What does horse look different from (Cheetah, Panther, Jaguar, Leopard, Tiger, Lion, 
Cougar, Domestic Cat)? Please answer in the format of: A horse has A, B, C,...,where A,B 
and C are noun phrases to describe the difference of a horse compared to (Cheetah, 
Panther, Jaguar, Leopard, Tiger, Lion, Cougar, Domestic Cat).

A horse has a long and flowing mane, a sturdy hoofed structure, pointed ear.

[d-att]1: a long and flowing mane   [d-att]2: a sturdy hoofed structure   [d-att]3: pointed earDiscriminative
Attributes

(4.3) Refined Table

: [d-att]1 a long and flowing mane 

Example 1

: [d-att]3 pointed ear 



(5) Complete Instruction

(6) LLM Output and Segmentation Result

For each object within the class horse in an image, output coordinates of a 16-point polygon that 
encloses the object. These points should be arranged in a clockwise direction. The output should 
be a tuple in the format of (c1, c2, ..., cn), where cn is the coordinates for the n-th object and its 
format should be ((x1,y1),(x2,y2),…,(x16,y16)). The coordinate value should be within (0, 384). 
To accomplish this task, you can refer to the following properties of horse: horse has a sleek coat, 
a long tail, a muscular body, four legs with hooves, a muzzle, expressive eyes, a long and flowing 
mane, a sturdy hoofed structure, pointed ear. For example, for image [support image], the 
output should be (((334, 192), (289, 231), (244, 237), (248, 297), (210, 300), (254, 99), (294, 
109), (364, 126), (54, 199), (104, 156), (142, 129), (173, 116), (204, 103), (170, 290), (118, 
280), (58, 254))), because in these regions, ((330, 168), (345, 217), (315, 227), (285, 231), 
(255, 99), (281, 103), (327, 116), (353, 122), (158, 171), (149, 126), (182, 109), (244, 237), 
(244, 237), (235, 237), (191, 221), (147, 211)) is a sleek coat, ((159, 262), (152, 277), (151, 
270), (139, 277), (148, 277), (148, 289), (159, 262), (159, 252), (126, 270), (122, 252), (129, 
222), (129, 248), (134, 274), (134, 284), (126, 270), (126, 258)) is expressed eyes , ((119, 
235), (119, 235), (119, 235), (119, 235), (117, 280), (133, 139), (160, 174), (160, 174), (48, 
221), (66, 175), (66, 175), (83, 162), (83, 162), (74, 270), (57, 265), (48, 221)) is a long and 
flowing mane, ((89, 254), (116, 254), (106, 254), (96, 254), (89, 254), (94, 215), (94, 215), (94, 
215), (48, 221), (48, 221), (56, 215), (88, 254), (88, 254), (87, 254), (74, 251), (74, 251)) is 
pointed ears. For image [query image], what is the output?

(((196, 92), (258, 61), (348, 
56), (424, 39), (477, 166), (421, 
179), (339, 112), (291, 182), 
(302, 281), (228, 241), (166, 
278), (122, 238), (7, 232), (3, 
172), (2, 117), (89, 111)))

LLM Output Segmentation Mask Final Result 
After Refinement



(1) Input Image

Support Image Query ImageSupport Ground Truth

(2) Class Attributes

                  
          

A cow has a large and sturdy body, a four-chambered stomach, a broad face, curved horns, 
a tail with a tuft of hair at the end, a snout.

[att]1: a large and sturdy body    [att]2: a four-chambered stomach   [att]3: a broad face
[att]4: curved horns  [att]5: a tail with a tuft of hair at the end    [att]6: a snout

Class
Attributes

(3) Region-attribute Corresponding Table

(4) Instruction Refinement 

(4.1) Ambiguity Detection
Except for cow, which classes also have (a broad face, curved horns, a snout) ? Please 
answer in the format of: the following classes also have them: A, B, C, ..., , where A, B 
and C are the name of classes. If there is no such a class, reply ‘no’.

The following classes also have them: Cheetah, Panther, Jaguar, Leopard, Tiger, Lion, 
Cougar, Domestic Cat.

[a-class]1: Cheetah   [a-class]2: Panther   [a-class]3: Jaguar   [a-class]4: Leopard
[a-class]5: Tiger   [a-class]6: Lion   [a-class]7: Cougar    [a-class]8: Domestic Cat  

Ambiguous
Classes

(4.2) Discriminative Attributes Generation

What does cow look different from (Wildebeest, Bighorn Sheep, Goat)? Please answer in 
the format of: A cow has A, B, C,...,where A,B and C are noun phrases to describe the 
difference of a cow compared to (Wildebeest, Bighorn Sheep, Goat).

A cow has pronounced udders, humped back, domesticated demeanor.

[d-att]1: pronounced udders   [d-att]2: humped back   [d-att]3: domesticated demeanorDiscriminative
Attributes

(4.3) Refined Table

Example 2

: [att]4 curved horns: [att]3 a broad face : [att]4 curved horns

: [att]4 curved horns : [att]6 a snout

: [att]4 curved horns: [att]3 a broad face : [att]4 curved horns

: [att]4 curved horns : [att]6 a snout

What does a cow look like? Please answer in the format of: A cow has A, B, C,...,where 
A,B and C are noun phrases to describe a cow 
.



: [att]4 curved horns

(4.4) Discriminative Attributes Generation (2nd Iteration)

Apart from (domesticated demeanor, a loose fold of skin under the neck, humped back), 
tell me more differences in appearance between cow and (Wildebeest, Bighorn Sheep, 
Goat). Please answer in the format of: Cow has A, B, C,..., where A,B and C are noun 
phrases to describe more differences of cow compared to (Wildebeest, Bighorn Sheep, 
Goat) apart from the given ones.

A cow has a flat face with a pronounced muzzle, a loose fold of skin, streamlined body.

[d-att]4: a flat face with a pronounced muzzle   [d-att]5: a loose fold of skin   
[d-att]6: streamlined body

Discriminative
Attributes

(4.5) Refined Table (2nd Iteration)

: [att]4 curved horns: [att]3 a broad face 

: [att]4 curved horns : [att]6 a snout

Because the newly-acquired discriminative attributes still couldn’t find matching regions in the support 
image, the resulting table after refinement remains to be ambiguous. Therefore, the refinement process 
is iteratively performed until the ambiguity is eradicated.

: [d-att]4 a flat face with 
a pronounced muzzle

: [d-att]5 a loose fold of skin : [d-att]5 a loose fold of skin 

The framework successfully discovers discriminative attributes [d-att] that can be aligned with the 
support image. Therefore, the ambiguity is eradicated, the iteration is terminated. 

(5) Complete Instruction

For each object within the class cow in an image, output coordinates of a 16-point polygon that 
encloses the object. These points should be arranged in a clockwise direction. The output should 
be a tuple in the format of (c1, c2, ..., cn), where cn is the coordinates for the n-th object and its 
format should be ((x1,y1),(x2,y2),…,(x16,y16)). The coordinate value should be within (0, 384). 
To accomplish this task, you can refer to the following properties of horse: cow has a large and 
sturdy body, a four-chambered stomach, a broad face, curved horns, a tail with a tuft of hair at 
the end, a snout, pronounced udders, humped back, domesticated demeanor, a flat face with a 
pronounced muzzle, a loose fold of skin, streamlined body. For example, for image [support 
image], the output should be (((189, 250), (195, 269), (194, 332), (236, 132), (195, 128), (90, 
83), (41, 149), (60, 230), (383, 169), (334, 133), (277, 138), (237, 383), (300, 383), (383, 
376), (383, 290), (383, 230))), because in these regions, ((285, 165), (256, 208), (187, 207), 
(164, 207), (142, 89), (158, 123), (176, 125), (217, 131), (41, 162), (52, 128), (65, 87), (101, 
69), (134, 79), (109, 240), (61, 242), (46, 199)) is a broad face, a flat face with a pronounced 
muzzle, ((89, 110), (98, 121), (93, 126), (78, 131), (74, 134), (82, 103), (82, 103), (82, 103), 
(60, 115), (60, 100), (57, 94), (63, 86), (73, 134), (65, 133), (56, 124), (60, 115)) is curved 
horns, ((71, 201), (63, 207), (60, 210), (59, 211), (54, 214), (61, 184), (68, 185), (80, 194), 
(46, 199), (46, 199), (47, 197), (47, 187), (53, 184), (49, 217), (33, 222), (18, 219)) is curved 
horns, ((90, 150), (94, 166), (83, 173), (82, 195), (65, 87), (82, 103), (93, 126), (84, 146), (41, 
158), (42, 146), (46, 138), (52, 128), (63, 86), (46, 199), (42, 169), (41, 162)) is curved horns, 
((280, 172), (273, 189), (262, 198), (248, 202), (244, 151), (254, 151), (271, 149), (288, 161), 
(206, 178), (212, 157), (222, 154), (228, 153), (243, 151), (243, 151), (217, 202), (207, 190)) 
is a snout, ((383, 218), (383, 252), (349, 266), (321, 266), (302, 158), (326, 160), (363, 156), 
(383, 184), (168, 215), (263, 204), (273, 196), (284, 172), (301, 158), (281, 261), (259, 261), 
(215, 256)) is a loose fold of skin, ((383, 184), (383, 206), (350, 205), (340, 205), (331, 207), 
(336, 161), (356, 157), (383, 162), (282, 183), (283, 164), (305, 158), (321, 159), (327, 207), 
(317, 208), (303, 210), (263, 204)) is a loose fold of skin. For image [query image], what is the 
output?



(6) LLM Output and Segmentation Result

((135, 57), (182, 48), (229, 52), 
(263, 81), (255, 109), (236, 
153), (208, 184), (216, 228), 
(181, 229), (168, 178), (160, 
229), (122, 210), (118, 168), 
(111, 130), (118, 98), (103, 
75)))

LLM Output Segmentation Mask Final Result 
After Refinement
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