
Living Scenes: Multi-object Relocalization
and Reconstruction in Changing 3D Environments

Supplementary Material

In this supplementary material, we provide:
1. A video that explains our method and shows our experi-

mental results (Sec. A).
2. Additional ablation study results (Sec. B.1) and detailed

per category results (Sec. B.2).
3. Implementation details on the network architecture

(Sec. C) and algorithm for registration and joint opti-
mization (Sec. E).

4. Details on data processing for training and evaluation
(Sec. F).

5. Description of evaluation metrics (Sec. G).
6. Additional visualizations on multi-object relocalization

and reconstruction (Sec. H).
7. A discussion of the limitations of our method (Sec. I).

A. Video
See the provided supplementary video for a summarized de-
scription of the method and results on creating living scenes.

B. Additional Experimental Results
In this section, we present additional experimental results.
Specifically, we further validate our design choices with
three ablation studies (Sec. B.1). In Sec. B.2, we provide
detailed per category results. We provide more qualitative
results in Sec. H.

B.1. Ablation Studies

We ablate MORE2 to justify our design choices for instance
matching, joint optimization, and network architecture.

Embeddings for matching. We compare the perfor-
mance of different combinations of embeddings to compute
the score matrix used for instance matching on 3RScan [14].
The results are tabulated in Tab. 1. When compared in-
dividually, the invariant embedding Finv performs consis-
tently better than the equivariant Feqv, signifying it plays a
more important role in instance matching. This is not a sur-
prise, since the shape details can be more decisive than pose,
especially when there is a changing environment. How-
ever, when using both embeddings, the results are further
boosted. Hence, we use both embeddings in MORE2.

Parameters to optimize. To find the best set of parame-
ters for the joint optimization, we experiment with differ-
ent optimization settings on FlyingShape. Tab. 2 shows the

Matching Setting Evaluation Metrics

E (Feqv) Λ (Finv)
Instance-level Recall ↑ Scene-level Recall ↑

Static Dynamic All @25% @50% @75%

✓ 58.20 78.60 69.38 89.77 79.55 45.45

✓ 58.20 73.80 66.75 85.23 72.73 43.18

✓ ✓ 60.32 87.50 71.77 87.50 78.41 50.00

Table 1. Ablation study of instance matching on 3RScan [14].
✓ denotes using the embedding for instance matching.

Optimization Setting Evaluation Metrics

G Feqv Finv Fc

RE [◦] L1-Chamfer [×10−3]

Mean ↓ Median ↓ Mean ↓ Median ↓

✗ ✗ ✗ ✗ 11.85 5.28 5.37 2.31
✓ ✗ ✗ ✗ 7.88 3.45 5.38 2.30
✓ ✗ ✗ ✓ 7.81 3.41 5.67 2.30
✓ ✓ ✗ ✓ 8.38 1.81 3.95 2.06
✓ ✓ ✓ ✓ 8.70 1.71 3.81 1.86

Table 2. Ablation study on joint optimization. ✗ denotes that the
parameters are fixed during optimization and ✓denotes learnable
parameters.

Parameter Finv Ft Feqv G

Step Size [×10−5] 1 1 10 5

Table 3. Step sizes of different parameters during joint opti-
mization.

optimization setting on the left and the corresponding per-
formance on the right. The best performance is achieved
when we optimize all four parameters. The optimization
on equivariant embeddings significantly reduces the rota-
tion error. Pure optimization on the pose graph gives the
best rotation error but provides poor performance on recon-
struction. This also shows that a single forward pass from
the VN-encoder cannot provide accurate pose and shape in-
formation and verifies the importance of jointly optimizing
pose and shape together. We use different learning rates
(step size) during optimization for each parameter (Tab. 3).
We mainly optimize Feqv and G0 and only apply small ad-
justments to Finv and Ft.

0.0 2.5 5.0 7.5 10.0
Rotation Error []

0

20

40

60

80
EC

D
F

[%
]

0.0 2.5 5.0 7.5 10.0
RMSE [cm]

0

20

40

60

80

EC
D

F
[%

]

chair sofa pillow table trash_bin others

Figure 1. Per category registration results on 3RScan [14]. We report ECDF curves of rotation error (RE) and transformation error
(RMSE).

Decoding strategy. We explore four decoding strategies
using equivariant Feqv and invariant Finv embeddings on
FlyingShape. The DeepSDF decoder takes as input the
positional embedding of the coordinates to query and the
global latent code of the shape representation. For a query
point p = (x, y, z), there are two ways to compute the po-
sitional embedding:
• Direct concatenation (inv.): cat[Finv,p]
• Concatenating with the inner product (inner.) of equivari-

ant embeddings and query point: cat[Finv, ⟨Feqv,p⟩]
where cat[·, ·] denotes feature-wise concatenation

As decoding architectures, we consider DeepSDF [9]
and a multi-layer perceptron (MLP) [4]. DeepSDF dif-
fers from regular MLPs, as shown in Fig. 4, by adding a
skip connection of the query code. We evaluate the perfor-
mance of combining each decoding strategy with each of
the decoder architectures and present the results in Tab. 4.
Inner.+DeepSDF shows the best performance. The inner
product can map the query coordinates to a high dimen-
sional space with more positional information as provided
by the skip connection in DeepSDF [9].

B.2. Category-level Performance

We report the registration performance of each category on
3RScan [14] in Fig. 1. The category of ‘table’ has the over-
all best performance and we believe this is due to the dis-
tinct geometric features of tables and their relatively large
size in the scene. The category of pillows has the worst per-
formance, which is not surprising since it is not strictly rigid
and has multiple symmetrical axes.

C. Network Architecture
In this section, we provide the implementation details of the
encoder-decoder network used in the main paper.

PE Decoder L1-Chamfer ↓ L1-UNI ↓ L1-NSS ↓ IoU ↑

Inv. MLP 7.04 0.037 0.021 0.325
Inv. DeepSDF 7.34 0.041 0.019 0.343
Inner. MLP 3.65 0.029 0.016 0.436
Inner. DeepSDF 3.58 0.027 0.015 0.454

Table 4. Ablation study on decoding strategies. Positional En-
coding (PE). Inner product (Inner.) and invariant feaures (Inv.).
L1-Chamfer [×10−3], UNI - Uniform SDF Sampling, NSS - Near
Surface Sampling.

C.1. Encoder

Here, we follow recent progress [1, 7] in equivariant net-
works in vector neurons (VN) [3] and present the graphic
illustration in Fig. 2. The encoder takes as input 3D point
cloud coordinates and processes them through 2 VN-Linear
blocks and 5 VN-Attention blocks. The VN-Linear block
consists of computing the k-nearest neighbor graph fea-
ture [15], and the VNLA block, which comprises three lay-
ers: VN-Linear, VN-normalization, and VN-activation [3].
The VN-Attention block [1] utilizes three VNLA blocks to
compute the K, Q, and V, respectively, and applies the at-
tention operation [13] and message passing. The dimen-
sions of the features for the 7 blocks are: 32, 32, 64,
64, 128, 256, and 512. This means that the intermediate
features are down-sampled after the 2nd (VN-Linear), 4th
(VN-Attention), and 5th (VN-Attention) blocks. The final
global feature of dimension 512 is then passed to compute
the final output F = (Finv ∈ R256,Feqv ∈ R3×256,Fs ∈
R+,Fc ∈ R3). Here, Finv,Feqv, and Fc are computed
by three VN-Linear prediction heads and Fs from channel-
wise normalization.

V
N

-L
in

ea
rB

lo
ck

–
3

,
3

2

P
o
in

t
C

lo
u

d

V
N

-L
in

ea
rB

lo
ck

–
3

2
,
3

2

V
N

-A
tt

en
ti

o
n

B
lo

ck
–

3
2

,
6

4

V
N

-A
tt

en
ti

o
n

B
lo

ck
–

6
4

,6
4

V
N

-A
tt

en
ti

o
n

B
lo

ck
–

6
4

,
1

2
8

V
N

-A
tt

en
ti

o
n

B
lo

ck
–

1
2

8
,
2

5
6

V
N

-A
tt

en
ti

o
n

B
lo

ck
–

2
5

6
,
5

1
2

VN-LinearBlock

k
n

n
-g

ra
p

h

V
N

-L
in

ea
r

V
N

-N
o
rm

al
iz

at
io

n

V
N

-A
ct

iv
at

io
n

VN-AttentionBlock

V
N

L
A

V
N

L
A

V
N

L
A

𝑭
𝒊

𝑭
𝒋

𝑭
𝒋

VNLA

𝑲
𝑸

𝑽

∙

V
N

L
A

 –
5

1
2

,
5

1
2

V
N

-L
in

ea
r

V
N

-L
in

ea
r

C
h
an

n
el

 N
o
rm

.

Q
u

ery
 C

o
d

e -
5

1
2

𝐅
𝑖𝑛
𝑣 -

2
5

6
𝐅
𝐞
𝐪
𝐯 ,𝐩

-
2

5
6

7
6

8

7
6

8

7
6

8

2
5

6
Q

u
ery

 C
o
d

e -
5

1
2

7
6

8

7
6

8

7
6

8

1

Figure 2. VN-Encoder Architecture [1, 3]. On the left is the overall architecture from the input point cloud to the intermediate embed-
dings, which are subsequently fed to the DeepSDF decoder. ⊙ denotes dividing the feature into multiple heads and computing score matrix
S from Q and K, and message passing between S and V , lastly to the final output feature of the encoder. On the right, we show two
important blocks of the encoder: VN-LinearBlock and VN-AttentionBlock.

Watertight Mesh Uniform Samples Near-surface Samples

Figure 3. Illustration of SDF samples for training. Left: a wa-
tertight mesh. Middle: uniform SDF samples. Right: near-surface
SDF samples.

C.2. Decoder

The architecture of the decoder is presented in Fig. 4. The
number of fully connected layers is 8, the same as in the
original DeepSDF [9]. In MORE2, the feature dimension is
increased from 256 in DeepSDF to 768 for two reasons: (1)
the dimension of the positional embedding is 256 and not
3; and (2) to increase the expressivity of the decoder when
trained on multiple categories (category-agnostic). Same
as in [9], the query code is computed by concatenating
the shape code, i.e., Finv, and the positional embedding
⟨Feqv, (p − Fc)/Fs⟩, which is further re-concatenated to
the intermediate feature of the 4th layer (skip connection).
The skip connection [9] can provide better performance and
a more regularized reconstruction (c.f . Inner.+MLP vs. In-
ner.+DeepSDF in Tab. 4).

D. Training Details

We follow EFEM [7] and DISN [18] and train the network
using SDF loss with regularization terms.

V
N

-L
in

ea
rB

lo
ck

–
3

,
3

2

P
o
in

t
C

lo
u

d

V
N

-L
in

ea
rB

lo
ck

–
3

2
,
3

2

V
N

-A
tt

en
ti

o
n

B
lo

ck
–

3
2

,
6

4

V
N

-A
tt

en
ti

o
n

B
lo

ck
–

6
4

,6
4

V
N

-A
tt

en
ti

o
n

B
lo

ck
–

6
4

,
1

2
8

V
N

-A
tt

en
ti

o
n

B
lo

ck
–

1
2

8
,
2

5
6

V
N

-A
tt

en
ti

o
n

B
lo

ck
–

2
5

6
,
5

1
2

VN-LinearBlock

k
n

n
-g

ra
p

h

V
N

-L
in

ea
r

V
N

-N
o
rm

al
iz

at
io

n

V
N

-A
ct

iv
at

io
n

VN-AttentionBlock

V
N

L
A

V
N

L
A

V
N

L
A

𝑭
𝒊

𝑭
𝒋

𝑭
𝒋

VNLA

𝑲
𝑸

𝑽

∙

V
N

L
A

 –
5

1
2

,
5

1
2

V
N

-L
in

ea
r

V
N

-L
in

ea
r

C
h
an

n
el

 N
o
rm

.

Q
u

er
y
 C

o
d

e
-

5
1

2

𝐅 𝑖
𝑛
𝑣
-

2
5

6
𝐅 𝐞

𝐪
𝐯
,𝐩

-
2

5
6

7
6

8

7
6

8

7
6

8

2
5

6
Q

u
er

y
 C

o
d

e
-

5
1

2

7
6

8

7
6

8

7
6

8 1

Figure 4. DeepSDF Decoder. → denotes residual connection.
The query code is re-concatenated to the intermediate feature at
the 4th layer.

SDF Loss. The SDF samples are generated from a unit
cube around the object. 50% are sampled near the surface
and 50% uniformly in the space (c.f . Fig. 3). We encourage
the network to learn more local details with:

LSDF =
λnear

∑
x∈Qnear

Lrecon(x) + λfar
∑

x∈Qfar
Lrecon(x)

|Qnear |+ |Qfar |
.

(1)
where Qnear denotes the set of samples with |SDF| < 0.1
andQfar the set of samples with |SDF| ≥ 0.1. The weights
of the two sets of samples are λnear = 1.0 and λfar = 0.5.

Regularization [7]. Two loss terms are used to regularize
the training of scale and centroid prediction:

Lscale = |1.0− Fs| (2)

and
Lcenter = ∥Fc∥2 . (3)

Algorithm 1: Registration
Input:
Xt1 (source), Xt2 (target), Φ(encoder), Ψ(decoder)
/* Initialization */
Ft1 ,Ft2 ← Φ(Xt1),Φ(Xt2)
R, t← Kabsch(Ft1 ,Ft2)
η ← 10−3: step size, K ← 200: number of steps;
/* Iterative Update */
for i = 0, ...,K do

Pi ← RiX
t1 + ti

Ft2
q ← cat[Finv

t2 , ⟨Feqv
t2 , (Pi−Fc

t2)/Fs
t2⟩]

L ← Lreg(X
t2 ,Xt2)

J(Ri, ti) = Lreg (X
t2 ,Xt2)

Ri+1 ← Ri − η · ∇RJ(Ri, ti)
ti+1 ← ti − η · ∇tJ(Ri, ti)

end
/* Terminate Iteration */
Output: R, t← argminR,t L

The regularization forces the scale to be one and the center
of the shape to be at the origin because ShapeNet [2] meshes
are placed at their canonical space. The centroid regulariza-
tion provides signals to correct the center of gravity of a
partial point cloud to its actual center in the canonical space
during training.

The final loss is computed as follows:

L = ωSDF LSDF + ωcenter Lcenter + ωscale Lscale , (4)

We follow [7] and set ωSDF = 1.0, ωcenter = 0.2, and
ωscale = 0.01.

E. Algorithms

Registration. We provide the details of our proposed reg-
istration in Algorithm 1. We set Xt1 as source and Xt2

as target in the registration and use the encoder Φ and de-
coder Ψ for initialization and optimization, respectively.
Kabsch(·, ·) denotes Kabsch algorithm [6]. Pi denotes the
source point cloud transformed by the estimated (Ri, ti) at
ith iteration. J denotes the analytical Jacobians of (Ri, ti).
∇ denotes the gradient of parameters.

Joint Optimization. We provide the algorithmic details
of our proposed joint optimization in Algorithm 2. We
take accumulated point clouds of each instance {Xt|t ∈
{1, ..T}} as input. REG() denotes the registration algo-
rithm in Algorithm 1 and we use it to initialize the pose
graph G. We compute the loss Ljoint of the accumulated
point cloud, which is the sum of the SDF loss Lsdf and the
regularization loss Lz .

Algorithm 2: Joint Optimization
Data: {Xt|t ∈ {0, 1, ..T− 1}}
/* Initialization */
F1,F1, ...FT ← Φ(X0);
for t = 0, ..., T − 1 do

Tt ← REG(Feqv
t,Feqv

t+1);
end
G← {Tt}Tt=1;
F∗ ← argminF{Lsdf (F

t)}Tt=1;
ϵ: learning rate, I ← 200: number of steps;
/* Iteration */
while i < I do
Ljoint ← 0;
for t = 0, ..., T − 1 do
Ljoint += Lsdf (X

t) + Lz(Fi) ;
end
/* Update using Adam */
[Fi,Gi]← AdamUpdate(Ljoint, ϵ) ;
i← i + 1;

end
/* Terminate Iteration */
Output: [F,G] = argminF,G Ljoint

F. Data Processing
F.1. Training Data

The network is trained under the supervision of Signed Dis-
tance Fields (SDFs). In order to generate the training sam-
ples, we compute the SDF for every shape in the training set
of the ShapeNet [2] subset. We partly follow the processing
pipelines of [7, 8], which include three steps: (i) making
the mesh watertight, (ii) generating point clouds from par-
tial mesh renderings, and (iii) sampling SDFs.

Making the mesh watertight. Watertight meshes usually
describe meshes consisting of one closed surface. This
means that they do not contain holes and have a clearly
defined interior [11]. The CAD models in ShapeNet are
non-watertight. We use MeshFusion1 [12] to process raw
meshes to watertight.

Generating point clouds from mesh renderings. To
mimic partial observations as in real-world datasets, we ren-
der depth maps of meshes from multiple views. First, we
construct a sphere around the mesh, fully covering it and
placing it exactly at the center. We uniformly sample 24
points on the sphere as focal points of the depth camera.
To ensure that the majority of the shape is within the field
of view, we place the principal point on the line connecting

1https://github.com/davidstutz/mesh-fusion

https://github.com/davidstutz/mesh-fusion

the focal point and the center of the sphere by solving the
camera orientation R:

z

w/2h/2
1

 = K[R|T]

X
Y
Z
1

 , (5)

where K denotes camera intrinsics and [R|T] transforma-
tion from world frame to camera frame. w and h are the di-
mensions of the image and [X,Y, Z, 1]T are the coordinates
of the focal point in the world frame. R is the unknown to
solve. We render depth maps at the 24 sampled positions
for every mesh using OpenGL [17] and back-project them
to 3D space as point clouds.

Sampling SDFs [7]. We sample SDF values around
meshes. We adopt two sampling strategies: uniform sam-
pling and near-surface sampling (c.f . Fig. 3). Uniform sam-
pling captures the global structure of the shape and near-
surface sampling captures high-frequency (detailed) sig-
nals. For each mesh, we sample 105 SDF samples, 50%
uniform and 50% near the surface.

F.2. FlyingShape Dataset

We synthesize the FlyingShape dataset based on the subset
of ShapeNet’s test set. It consists of scenes that have been
captured repeatedly at irregular intervals (temporal scans),
in between which consisting objects have been moved. The
number of objects in each scene ranges from four to eight.
As the number of objects per category in the subset are dif-
ferent, we balance their frequency when randomly drawing
samples. To replicate the partial completeness of a scene
in real captures, we generate the scan of each scene by ren-
dering depth images from random viewpoints on the upper
hemisphere within the scene and un-projecting the depth
pixels into the 3D space. We combine the point clouds re-
sulting from three rendered views. We create 100 scenes
in total, with each scene containing five temporal scans.
We generate annotations on instance segmentation, associ-
ations, and transformations directly from the ground truth.
Sample scenes are shown in Fig. 8.

F.3. 3RScan Dataset

The 3RScan dataset [14] provides raw RGB-D scans with
known poses. As our method reasons on point cloud, we
downsample the RGB-D frames to reduce the point cloud
density and back-project them to obtain the raw scan as our
input. We use the semantic maps of 23 categories:

armchair, bed, bench, chair, coffee table, computer desk,
couch, couch table, cushion, desk, dining chair, dining ta-
ble, footstool, ottoman, pillow, rocking chair, round table,
side table, sofa, sofa chair, stand, table and trash can.

We set the other semantic labels as background and do
not process them. We use the official toolbox of [14] and
generate the instance masks for our generated point cloud
from the dataset’s semantic mesh. As [14] only provides
the mesh reconstruction on the level of a scene, we use the
instance masks to extract the individual mesh (vertices and
faces) of each instance in the scene as ground truth.

G. Evaluation Metrics
In this section, we provide the formulas for all the evalua-
tion metrics we used in the main paper, in the order of the
three sequential tasks.

G.1. Instance Matching

Instance-level matching recall. This metric measures the
fraction of correctly matched instance pairs over ground
truth instance pairs within the entire dataset.

Instance Recall =
correct matches
total matches

(6)

Scene-level matching recall. To understand the perfor-
mance on a scene level, since each scene has multiple in-
stances, we compute instance recall only for instance pairs
that exist in the scene and check what fraction of scenes
have recall > τ . In the main paper, we set τ to four values
25%, 50%, 75%, and 100%, of which the first three are used
for 3RScan [14] and the last three are used for FlyingShape,
as 3RScan is a real-world dataset and is more challenging
than FlyingShape.

G.2. Point Cloud Registration.

Rotation error (RE). It measures the geodesic distance
between two rotations:

RE = arccos

(
trace

(
RTR

)
− 1

2

)
, (7)

where R denotes the predicted rotation matrix and R the
ground truth. trace() denotes the trace of a matrix.

Registration recall (RR). It is the fraction of rotation er-
rors smaller than a threshold. We use as thresholds RE <
5◦ for FlyingShape and RE < 10◦ for 3RScan [14]. We
use a higher threshold for 3RScan because the accuracy of
ground truth transformations is lower, since they were ob-
tained using Procrustes on manually annotated 3D keypoint
correspondences between two temporal scans [14]. Flying-
Shape is synthesized with no introduced errors.

Transformation error. It is the root mean square error
of per-point distance between point clouds transformed by

prediction and ground truth poses.

RMSE =

√
1

M +N

(∑∥∥∥TQ
P(p)−T

Q

P(p)
∥∥∥2
2
+
∑∥∥∥TP

Q(q)−T
P

Q(q)
∥∥∥2
2

)
(8)

where TQ
P denotes the transformation from P to Q and vice

versa. M,N denote the number of points in P,Q, respec-
tively.

Chamfer distance (CD). It measures the quality of regis-
tration. Here we follow [5, 19] and use the modified cham-
fer distance metric:

C̃D(P,Q) =
1

|P|
∑
p∈P

min
q∈Qraw

∥∥∥TQ
P(p)− q

∥∥∥2
2
+

1

|Q|
∑
q∈Q

min
p∈Praw

∥∥∥q−TQ
P(p)

∥∥∥2
2
,

(9)

where Praw ∈ RM×3 and Qraw ∈ RN×3 are raw source
and target point clouds, and P ∈ R1024×3 and Q ∈
R1024×3 are input source and target point clouds.

Empirical Cumulative Distribution Function (ECDF).
This metric measures the distribution of a set of values

ECDF(x) =
|{oi < x}|
|O|

, (10)

where O is a set of values (RE and RMSE in our case) and
x ∈ [min{O},max{O}] [5]. We compute the ECDF curves
w.r.t. rotation error and transformation error in the main
paper.

G.3. Instance Reconstruction

We follow the definition from [8, 10]. LetMpred andMGT

be the sets of all points that are inside or on the surface of
the predicted and ground truth mesh, respectively.

Chamfer-L1. We follow [10] and define reconstruction
accuracy and completeness:

Accuracy (Mpred | MGT) ≡
1

|∂Mpred |

∫
∂Mpred

min
q∈∂MGT

∥p− q∥dp

(11)

Complete. (Mpred | MGT) ≡
1

|∂MGT|

∫
∂MGT

min
p∈∂Mpred

∥p− q∥dq

(12)
Here ∂MGT and ∂MGT are the surfaces of Mpred and
MGT, respectively. The Chamfer-L1 can be defined as
below:

Chamfer-L1 (Mpred ,MGT) =

1

2
(Accuracy (Mpred | MGT) + Completeness (Mpred | MGT))

(13)

Volumetric IoU. It is equal to the intersection divided by
the union of two sets:

IoU (Mpred ,MGT) ≡
|Mpred ∩MGT|
|Mpred ∪MGT|

. (14)

We follow the implementation of ConvONet [10] to com-
pute IoU: randomly sample 100K points from the bounding
boxes of each mesh and determine if the points lie inside or
outsideMpred andMGT, respectively.

SDF Recall. It is designed by us to evaluate reconstruc-
tion quality when the watertight mesh of ground truth is not
available:

SDF Recall: =
1

K

∑
v∈V

1(SDF(v)), (15)

where 1(SDF(v)) = 1 if SDF(v) < 0.05 else 0. V
denotes the set of vertices of the ground truth mesh and v
each vertex therein. We evaluate by computing the mean
absolute SDF errors of vertices in the ground truth mesh
(not necessarily watertight) w.r.t. the predicted mesh using
library [16] and calculate the ratio of vertices with an SDF
error smaller than the threshold. We set the threshold of
SDF values to 0.05 because the threshold for near-surface
samples during training is 0.1 and we divide it by two during
evaluation.

H. Additional Qualitative Results
We provide the following qualitative results: (1) point cloud
accumulation on FlyingShape with GT input (c.f . Fig. 7);
(2) point cloud registration on FlyingShape at instance level
with GT input (c.f . Fig. 6); (3) end-to-end multi-object relo-
calization on 3RScan (c.f . Fig. 9); and (4) end-to-end multi-
object relocalization and reconstruction (Fig. 10). In these
additional visualizations, we provide more comprehensive
qualitative evaluations, showing success and failure cases
of our method and the baseline. The baseline method is the
same per task as the one used in the main paper.

I. Discussion
In this paper, we introduce MORE2, a novel method to
parse long-term evolving environments. Through our ex-
tensive experiments on two datasets, we demonstrate the
superior performance and robustness of our method even
on partial, noisy point clouds with pose variations.

Limitations (1) Our method includes test-time optimiza-
tions and hence cannot run end-to-end in real-time. We con-
sider it as a post-processing algorithm for temporal scans
to understand the instance-level change (rigid motion and
geometry) between them. The capture of indoor environ-
ment does not happen in real-time but instead has relatively

Source Target Ours Ground Truth

Figure 5. A failure case of relocalization in 3RScan [14]. The failure is due to the large number of similar objects in the scene i.e.,
pillows, and the incomplete/low coverage of the scene in the rescan (target). As many instances in the source scan are no longer observed
in the target scan, our method abandons unmatched ones as removed.

long intervals. Therefore, real-time execution is not a ne-
cessity in this task. (2) Our method faces challenges when
dealing with multiple identical, similar, and/or symmetric
shapes in the scene (c.f . Fig. 5). This can be alleviated in
future work by incorporating RGB-values and global con-
text in the scene into our method.

Point Cloud 2 Point Cloud 3 Estimate Ground TruthPoint Cloud 1

Figure 6. Qualitative results of point cloud registration on Fly-
ingShape. Left three columns are the three input point clouds.
Ground truth on the right. Our method does not look for corre-
spondences between two point clouds, e.g., the back and front of
the chair in the last row: our method first tries to complete the in-
stance surface based on partial observations and then registers the
completed zero-level set.

1 stage 2 stages 4 stages 8 stages

Figure 7. Qualitative results of point cloud accumulation at
instance level on FlyingShape. This figure is corresponding to
Figure. 7 (in the main paper), showing the ever-increasing quality
and completeness of reconstruction with MORE2 when more data
are accumulated. Each temporal point cloud is showcased in a
different color. Per example, top row shows the registration and
bottom row shows the reconstruction results.

𝑡1 𝑡2 𝑡3 𝑡4 𝑡5

Figure 8. Samples of changing scenes from FlyingShape. Each scene has five temporal scans, shown in different colors.

Source Target Baseline Ours Ground Truth

Figure 9. Qualitative results of relocalization on 3RScan [14]. MORE2 generates more correct matches thus better localization of moved
instances. ↘ highlights the differences between baseline and ours. In the first row, the baseline mismatched pillows with ottoman, leading
to wrong registration. In the second row, our method outperforms the baseline on the trash can. In the third row, the baseline wrongly
flipped the sofa colored in pink. In the last row, we present one scene with multiple identical chairs, where both methods fail in relocalizing
all of them. Ours relocalizes only one and the baseline none of them.

Reference Rescan Baseline Ours

Figure 10. Qualitative results of end-to-end performance on 3RScan [14]. Rescans are accumulated to the reference scan. The
reconstruction of the scene is based on the accumulation, including the errors and noises provided from performing the task end-to-end.
Compared to the baseline, our method is able to reconstruct cleaner and more complete surfaces by accumulating partial observations.

References
[1] Serge Assaad, Carlton Downey, Rami Al-Rfou, Nigamaa

Nayakanti, and Ben Sapp. Vn-transformer: Rotation-
equivariant attention for vector neurons. Transactions on
Machine Learning Research, 2023.

[2] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat
Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Mano-
lis Savva, Shuran Song, Hao Su, et al. Shapenet: An
information-rich 3d model repository. arXiv:1512.03012,
2015.

[3] Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard,
Andrea Tagliasacchi, and Leonidas J Guibas. Vector neu-
rons: A general framework for so (3)-equivariant networks.
In CVPR, 2021.

[4] Simon Haykin. Neural networks: a comprehensive founda-
tion. Prentice Hall PTR, 1998.

[5] Shengyu Huang, Zan Gojcic, Mikhail Usvyatsov, Andreas
Wieser, and Konrad Schindler. Predator: Registration of 3d
point clouds with low overlap. In CVPR, 2021.

[6] Wolfgang Kabsch. A solution for the best rotation to re-
late two sets of vectors. Acta Crystallographica Section A:
Crystal Physics, Diffraction, Theoretical and General Crys-
tallography, 32(5):922–923, 1976.

[7] Jiahui Lei, Congyue Deng, Karl Schmeckpeper, Leonidas
Guibas, and Kostas Daniilidis. EFEM: Equivariant neural
field expectation maximization for 3d object segmentation
without scene supervision. In CVPR, 2023.

[8] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy networks:
Learning 3d reconstruction in function space. In CVPR,
2019.

[9] Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. Deepsdf: Learning con-
tinuous signed distance functions for shape representation.
In CVPR, 2019.

[10] Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc
Pollefeys, and Andreas Geiger. Convolutional occupancy
networks. In ECCV, 2020.

[11] David Stutz. A formal definition of watertight
meshes. https://davidstutz.de/a-formal-
definition-of-watertight-meshes/, 2018.

[12] David Stutz and Andreas Geiger. Learning 3d shape comple-
tion under weak supervision. arXiv:1805.07290, 2018.

[13] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NeurIPS, 2017.

[14] Johanna Wald, Armen Avetisyan, Nassir Navab, Federico
Tombari, and Matthias Nießner. Rio: 3d object instance
re-localization in changing indoor environments. In CVPR,
2019.

[15] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. ACM Transactions
on Graphics (ToG), 38(5):1–12, 2019.

[16] Francis Williams. Point cloud utils, 2022.
https://www.github.com/fwilliams/point-cloud-utils.

[17] Mason Woo, Jackie Neider, Tom Davis, and Dave Shreiner.
OpenGL programming guide: the official guide to learning
OpenGL, version 1.2. Addison-Wesley Longman Publishing
Co., Inc., 1999.

[18] Qiangeng Xu, Weiyue Wang, Duygu Ceylan, Radomir
Mech, and Ulrich Neumann. Disn: Deep implicit surface
network for high-quality single-view 3d reconstruction. In
NeurIPS, 2019.

[19] Zi Jian Yew and Gim Hee Lee. Rpm-net: Robust point
matching using learned features. In CVPR, 2020.

https://davidstutz.de/a-formal-definition-of-watertight-meshes/
https://davidstutz.de/a-formal-definition-of-watertight-meshes/

	. Video
	. Additional Experimental Results
	. Ablation Studies
	. Category-level Performance

	. Network Architecture
	. Encoder
	. Decoder

	. Training Details
	. Algorithms
	. Data Processing
	. Training Data
	. FlyingShape Dataset
	. 3RScan Dataset

	. Evaluation Metrics
	. Instance Matching
	. Point Cloud Registration.
	. Instance Reconstruction

	. Additional Qualitative Results
	. Discussion

