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1. Homography Parameterization

We parameterize the homography matrix M using the trans-

lation T of the 4 corner points based on the least squares

method, which can be expressed as

Am = b, (1)

where A is composed of the original coordinates of four

points on the source image IS and the mapped coordinates

on the target image IT, b represents the mapped coordi-

nates of four points, and m denotes the vectorized homog-

raphy matrix. We denote the original coordinate as (ui, vi)
and the mapped coordinate as (u′

i
, v′

i
), where i ranges from

1 to 4, representing four points. Then the mapped coordi-

nates of four points using the estimated translation T can be

expressed as

u′

1 = u1 +T(0, 0, 0)

v′1 = v1 +T(1, 0, 0)

u′

2 = u2 +T(0, 0, 1)

v′2 = v2 +T(1, 0, 1)

u′

3 = u3 +T(0, 1, 0)

v′3 = v3 +T(1, 1, 0)

u′

4 = u4 +T(0, 1, 1)

v′4 = v4 +T(1, 1, 1).

(2)

Given the homography matrix M, the relationship between

the original four points (ui, vi) and the mapped four points

(u′

i
, v′

i
) can be represented as

u′

i
=

M11ui +M12vi +M13

M31ui +M32vi + 1

v′
i
=

M21ui +M22vi +M23

M31ui +M32vi + 1
.

(3)

The above equations can be rearranged to be

u′

i
= M11ui +M12vi +M13 −M31uiu

′

i
−M32viu

′

i

v′
i
= M21ui +M22vi +M23 −M31uiv

′

i
−M32viv

′

i
.
(4)

Then we construct the matrix A as

A =

























u1 v1 1 0 0 0 −u1u
′

1 −v1u
′

1

0 0 0 u1 v1 1 −u1v
′

1 −v1v
′

1

u2 v2 1 0 0 0 −u2u
′

2 −v2u
′

2

0 0 0 u2 v2 1 −u2v
′

2 −v2v
′

2

u3 v3 1 0 0 0 −u3u
′

3 −v3u
′

3

0 0 0 u3 v3 1 −u3v
′

3 −v3v
′

3

u4 v4 1 0 0 0 −u4u
′

4 −v4u
′

4

0 0 0 u4 v4 1 −u4v
′

4 −v4v
′

4

























, (5)

and the mapped coordinates b as

b =
[

u′

1 v′1 u′

2 v′2 u′

3 v′3 u′

4 v′4
]T

. (6)

Finally, the vectorized homography matrix can be expressed

as

m =
[

M11 M12 M13 M21 M22 M23 M31 M32

]T
.
(7)

The final homography matrix M is obtained by solving the

least squares problem.

2. Dataset Details

We evaluate our MCNet on MSCOCO [7], GoogleEarth

[11], GoogleMap [11], and SPID [9] datasets, as shown in

Fig. 1. The size of input image pairs is set to be 128× 128.

In the following, we will explain the details for each dataset.

MSCOCO. MSCOCO is a widely used large-scale im-

age dataset in computer vision tasks, which covers a vari-

ety of common scenarios, serving as a fundamental dataset

for evaluating homography estimation methods. We process

MSCOCO as in [2–6, 10, 11]. The images are first resized

to 320× 240. Then we crop a 128× 128 patch from the re-

sized image as the target image. The resized image is then

deformed using the homography transformation produced

by the random perturbation of four corner points within the

range [−32, 32]. The same region of the deformed image is

cropped to serve as the source image.

GoogleEarth. GoogleEarth consists of cross-season

satellite images collected on 04/2018 and 06/2019 in the

Great Boston area. We process GoogleEarth in the same
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Figure 1. Example image pairs of MSCOCO, Google Earth, Google Map, and SPID datasets. MSCOCO dataset consists of common RGB

images. Google Earth and Google Map datasets contain data from cross-modalities. SPID dataset specifically provides surveillance images

that include dynamic foreground objects.

way as in [2, 3, 11]. The images are cropped into 192×192
image pairs, which then enables the 128 × 128 images to

have a perturbation of [−32, 32].

GoogleMap. GoogleMap includes satellite images and

corresponding map images of the same region. We process

GoogleMap in the same way as in [2, 3, 11]. The images

are cropped into 192×192 image pairs, which then enables

the 128× 128 images to have a perturbation of [−32, 32].

SPID. SPID dataset provides surveillance images that in-

clude dynamic foreground objects. We process the dataset

in the same way as in [2]. The original image pairs are

cropped to 220× 220, and then produce the 128× 128 im-

ages to have a perturbation of [−32, 32].

3. More Experimental Results

This section presents more experimental results on each

dataset, including the average corner error (ACE) at each

iteration, homography estimation result, and correlation at

each iteration. To ensure a fair comparison, all algorithms

are trained using the same data processing and splitting

strategy.

ACE at each Iteration. Our MCNet is compared

with the two previous deep iteration-based methods 2-scale

RHWF [3] and 2-scale IHN [2] in terms of ACE at each iter-

ation, to better demonstrate the effectiveness of our model.

As illustrated in Fig. 2, our MCNet consistently achieves

observably more accurate estimation as the iteration con-

tinues, while the error reduction of 2-scale RHWF and 2-

scale IHN generally becomes inconspicuous as the iteration

grows.



Homography estimation result. We further demon-

strate the homography estimation results on each dataset

for various methods. For GoogleEarth and GoogleMap

datasets, we compare our MCNet with 2-scale RHWF [3],

2-scale IHN [2], MHN+DLKFM [11], DHN [5], MHN [6],

SIFT+MAGSAC [1], and SIFT+RANSAC [8], as shown

in Fig. 3 and Fig. 4. It is observed that our MCNet

achieves highly stable and accurate estimation results. For

the SPID dataset, we compare our MCNet with IHN [2],

UDHN [10], MHN [6], DHN [5], SIFT+MAGSAC [1], and

SIFT+RANSAC [8], as shown in Fig. 5, where UDHN is

trained in a supervised manner as in [5]. We note that MC-

Net shows high estimation accuracy despite the existence of

dynamic foreground objects.

Correlation at each Iteration. To further demonstrate

the superior accuracy achieved by our MCNet, which is

attributed to its multiscale correlation searching design,

we visualize the correlations obtained in each iteration for

correlation-based methods, including our MCNet, the pre-

vious state-of-the-art (SOTA) method RHWF [3], and IHN

[2]. The obtained correlations have a channel dimension

of (2r + 1) × (2r + 1), where r represents the search-

ing radius. We then visualize the center correlation, which

is in the
[

(2r + 1)2/2
]

th dimension of the correlation. In

the visualization, the darker regions indicate lower correla-

tion activation values, which are expected to be the areas

with significant differences. As shown in Fig. 6 and Fig.

7, for the GoogleEarth and GoogleMap datasets, with the

continuation of iterations, the correlation quality of RHWF

and IHN remains unimproved, while MCNet consistently

achieves better correlation quality. For the SPID dataset,

the correlations of MCNet reject outliers in the foreground

region with better accuracy than IHN, as shown in Fig. 8,

which can significantly improve the estimation accuracy.
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Figure 2. More experimental results of homography estimation with average corner error (ACE) at each iteration of our MCNet, IHN

[2], and RHWF [3]. Green polygons denote the ground-truth position of IS on IT. Red polygons denote the estimated position using our

MCNet. Orange polygons denote the estimated position using 2-scale IHN. Blue polygons denote the estimated position using 2-scale

RHWF. MCNet stops at iteration 6 while 2-scale IHN and 2-scale RHWF at 12.



Figure 3. More experimental homography estimation results on the GoogleEarth dataset of various methods, including our MCNet, 2-scale

RHWF [3], 2-scale IHN [2], MHN+DLKFM [11], DHN [5], MHN [6], SIFT+MAGSAC [1], and SIFT+RANSAC [8]. The green polygon

represents the ground-truth location of the source image IS on the target image. The red polygon represents the predicted location on

the target image estimated by different algorithms. The smaller the relative distance of the polygons and the smaller the ACE the better

estimation performance of the corresponding algorithm.



Figure 4. More experimental homography estimation results on the GoogleMap dataset of various methods, including our MCNet, 2-scale

RHWF [3], 2-scale IHN [2], MHN+DLKFM [11], DHN [5], MHN [6], SIFT+MAGSAC [1], and SIFT+RANSAC [8]. The polygon

settings are the same as in Fig. 3.



Figure 5. More experimental homography estimation results on the SPID dataset of various methods, including our MCNet, 2-scale IHN-

mov [2], DHN [5], MHN [6], UDHN [10], SIFT+MAGSAC [1], and SIFT+RANSAC [8]. The polygon settings are the same as in Fig. 3.
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Figure 6. Comparison of correlation at each iteration for our MCNet, RHWF [3], and IHN [2] on the GoogleEarth dataset. The source

image IS is warped to get IWS , which is aligned with the target image IT to make a better illustration.
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Figure 7. Comparison of correlation at each iteration for our MCNet, RHWF [3], and IHN [2] on the GoogleMap dataset. The image

settings are the same as in Fig. 6.
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Figure 8. Comparison of correlation at each iteration for our MCNet and IHN [2] on the SPID dataset. The warped source image I
W

S and

target image IT are fused to obtain IF, in which the dynamic foreground objects are semitransparent.
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