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In this material, we first investigate the related literature
about this work. Then, we provide detailed descriptions of
the experimental setup and hyperparameters, along with ad-
ditional framework details. At last, we present more abla-
tion studies and further analysis.

1. Related Work
Point Cloud Semantic Segmentation aims to assign
each point with the correct category label within a pre-
defined label space. The early PointNet [16], Point-
Net++ [17] establish the basic framework for learning-
based 3D analysis. The follow-up works [3, 6, 22, 25–
28] further improve the 3D representation and segmenta-
tion performance. Despite this, these methods are data-
hungry and require extensive additional labeled data to be
fine-tuned for unseen classes. To address this issue, a
series of 3D few-shot learning methods have been pro-
posed [8, 11, 13, 15, 21, 23, 24]. AttMPTI [29] extracts
multiple prototypes from support-set features and predicts
query labels in a transductive style. 2CBR [31] proposes
cross-class rectification to alleviate the query-support do-
main gap. PAP-FZ3D [7] jointly trains few-shot and zero-
shot semantic segmentation tasks. All of these methods
adopt the meta-learning strategy including both pre-training
and episodic training stages. In this work, we propose
more efficient solutions for 3D few-shot semantic segmen-
tation. We first devise a non-parametric encoder to discard
the time-consuming pre-training stage. Based on this, a
parameter-free model, Seg-NN, and a parametric variant,
Seg-PN, are proposed, which achieve competitive perfor-
mance with minimal resources and simplify the traditional
meta-learning pipelines.

Positional Encoding (PE) projects a location vector into
a high-dimensional embedding that can preserve spatial in-
formation and, at the same time, be learning-friendly for
downstream algorithms [12]. Transformer [20] first utilizes
PE to indicate the one-dimensional location of parallel input
entries in a sequence, which is composed of trigonometric
functions. Such trigonometric PE can encode both abso-
lute and relative positions, and each of its dimensions corre-
sponds to a predefined frequency and phase, which has also
been employed for learning high-frequency functions [19]
and improving 3D rendering in NeRF [14]. Some Trans-
formers incorporate Gaussian random frequencies [10], and
Mip-NeRF [2] reduces aliasing artifacts in rendering by
suppressing high frequencies. In 3D domains, RobustPPE
[30] adopts Gaussian random features for robust 3D clas-
sification. Point-NN [27] is the first non-parametric model
for shape classification which leverages basic trigonomet-
ric PEs to encode point coordinates for shape classification.
In this work, we extend Point-NN to scene segmentation
and utilize trigonometric PE to encode positional and color
information, where manually designed filters are used for
scene-level geometry encoding.

2. Experimental Setup
Dataset Split S3DIS [1] consists of 272 room point
clouds from three different buildings with distinct architec-
tural styles and appearances. We exclude the background
clutter class and focus on 12 explicit semantic classes.
ScanNet [4] comprises 1,513 point cloud scans from 707 in-
door scenes, with 20 explicit semantic categories provided
for segmentation. Tab. 1 lists the class names in the S0 and
S1 splits of S3DIS and ScanNet datasets.
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S0 S1

S3DIS beam, board, bookcase,
ceiling, chair, column

door, floor, sofa,
table, wall, window

ScanNet
bathtub, bed, bookshelf,
cabinet, chair, counter,

curtain, desk, door,
floor

other furniture, picture,
refrigerator, show curtain,

sink, sofa, table,
toilet, wall, window

Table 1. Seen and Unseen Classes Split for S3DIS and ScanNet.
We follow [29] to evenly assign categories to S0 and S1 splits.

Hyperparameters The Seg-NN encoder is frozen in all
experiments. In the Seg-NN encoder, we sample 16 neigh-
bor points with k-NN to build the neighborhood of the
center point for both manipulation and upsampling layers.
For Seg-PN, we first use a fully connected layer to re-
fine the features extracted by the non-parametric encoder
and then feed the refined features to the QUEST mod-
ule. The fully connected layer consists of 2 linear pro-
jection operations and each linear projection is followed
by a batch normalization [9] and a rectified linear acti-
vation [5] function. The detailed structure of the fully
connected layer is: ‘(BN+ReLU) + (Linear+BN+ReLU)
+ (Linear+BN+ReLU)’, where ‘BN’, ‘ReLU’, and ‘Lin-
ear’ represent batch normalization, rectified linear activa-
tion, and linear projection, respectively. We set the ker-
nel size and stride of the local maximum pooling to 32
in the QUEST module. Since each point cloud contains
M = 2048 points, the local maximum pooling operation
outputs M ′ = 64 statistics for each point cloud.

Training Details The proposed Seg-NN and Seg-PN are
implemented using PyTorch. Seg-PN is trained on a GForce
A6000 GPU. The meta-training is performed directly on
Ctrain split, using AdamW optimizer (β1 = 0.9, β2 =
0.999) to update the QUEST module of Seg-PN. The initial
learning rate is set to 0.001 and halved every 7,000 itera-
tions. In episodic training, each batch contains 1 episode,
which includes a support set and a query set. The support
set randomly selects N -way-K-shot point clouds and the
query set randomly selects N unseen samples.

3. Additional Ablation Study
We conduct additional ablation experiments to reveal the
roles of different detailed designs. By default, we still con-
duct experiments under 2-way-1-shot settings on the S0

split of S3DIS dataset and use mIoU (%) as criteria to eval-
uate the results of both Seg-NN and Seg-PN.

3.1. Ablation for Seg-NN

In this section, we mainly investigate different hyperparam-
eters and designs of PEs, embedding manipulation layers,
and upsampling layers.

mIoU Coordinate + Color
S0 S1 Avg S0 S1 Avg

Seg-NN 48.81 49.04 48.93 49.45 49.60 49.53
Seg-PN 67.47 66.78 67.13 64.84 67.98 66.41

Table 2. Ablation for Position and Color Information under 2-
way-1-shot settings on both S0 and S1 splits of S3DIS. We report
Seg-NN and Seg-PN’s results (%).

θ 10 20 30 40 60 80 100

Seg-NN 49.12 49.38 49.45 47.87 44.76 43.54 40.16
Seg-PN 61.85 62.34 64.84 63.08 62.56 63.68 64.05

Table 3. Ablation for Parameter θ in PEs.

d 5 8 10 15 20 24 30

Seg-NN 44.24 46.37 47.65 48.90 49.45 48.68 48.53
Seg-PN 63.37 63.49 64.84 63.76 63.35 63.45 63.81

Table 4. Ablation on the Dimensionality of PEs.

Role of Position and Color Information In Tab. 2, we
exhibit more results to investigate the role of the position
and color information. For Seg-NN, we observe that both
position and color information are helpful for the segmen-
tation, indicating that our model is capable of encoding ge-
ometries and integrating two types of information. How-
ever, in Seg-PN, employing colors hinders the prediction,
which suggests that color information is not crucial for few-
shot tasks and may lead to overfitting. This aligns with the
observation of [18], which randomly abandons color infor-
mation during training to reduce overfitting.

Hyperparameters of PEs 1) Parameter θ in PE. In
the initial PE, we utilize d log-linear spaced frequencies
u = [u1, ..., ud] to project positions and colors into high-
dimensional encodings, where ui = θi/d with a base num-
ber θ. In Tab. 3, we explore the impact of θ on Seg-NN and
Seg-PN, where θ ∈ {10, 20, 30, 40, 60, 80, 100}. From the
table, we observe that Seg-NN is more sensitive to θ, while
Seg-PN exhibits higher tolerance. In addition, Seg-NN
prefers low θ values, and a larger θ will cause significant
performance degradation. 2) Dimensionality of PEs. We
then examine the effect of the dimensionality of PEs. We
sample d frequencies to construct the PE. Tab. 4 presents
the results with different frequency numbers d. We explore
d ∈ {5, 8, 10, 15, 20, 24, 30} and the corresponding dimen-
sionality of PEs are 6d ∈ {30, 48, 60, 90, 120, 144, 180}.
We observe that d = 20 and 10 are the best choices for Seg-
NN and Seg-PN, respectively. This suggests that reducing
the dimension of PEs has the potential to impair the perfor-
mance of Seg-NN, while Seg-PN can effectively learn shape



Frequency Distribution Seg-NN Seg-PNGaussian Laplace Uniform
✓ 49.45 64.84

✓ 45.21 63.21
✓ 49.35 62.49

Table 5. Ablation Study for Frequency Distribution in embed-
ding manipulation layers.

Variance 0.5 1 2 5 10 20

Seg-NN 48.37 49.45 49.43 49.02 47.53 46.13
Seg-PN 63.87 64.84 64.86 65.72 64.29 63.10

Table 6. Ablation for the Variance of the Gaussian Distribution
in frequencies sampling.

representations from relatively lower-dimensional embed-
dings.

Embedding Manipulation 1) Different Distributions of
Sampled Frequencies In embedding manipulation layers,
we sample frequencies v to generate the projection weights.
In Tab. 5, we compare the effects of different frequency dis-
tributions. Totally three types of distribution are compared,
Gaussian, Laplace, and uniform distributions. By compari-
son, we observe that the best performance is achieved when
the sampled frequencies follow a Gaussian distribution. The
reason behind this may be that both Laplace and uniform
distribution contain more mid- and high-frequency informa-
tion, thereby introducing excessive noises and redundancies
into shape representation. 2) Variance of Gaussian Distri-
bution. In Tab. 6, we investigate the impact of the variance
of the Gaussian distribution used for frequency sampling.
A larger variance indicates more middle or high frequen-
cies are exploited in feature extraction. We find that Seg-PN
can learn useful information from higher frequencies to en-
hance performance, while Seg-NN benefits more from low
frequencies.

Scaling Factor γ in the Segmentation Head In the non-
parametric segmentation head, we use φ(x) = exp(−γ(1−
x)) as an activation function, where γ is a scaling factor. In
this part, we explore the effect of different values of γ. Tab.
7 presents the results of Seg-NN with different γs. We ex-
periment with γ ∈ {100, 300, 500, 700, 1000, 1200, 1500}
and observe that γ ≤ 500 guarantees more accurate predic-
tion and γ > 1000 causes a rapid performance drop.

3.2. Ablation for Seg-PN

Pooling Operation in the QUEST Module In the
QUEST module, we use local maximum pooling to ob-
tain M ′ statistics for each point cloud. We mainly explore

γ 100 300 500 700 1000 1200 1500

Seg-NN 50.25 50.13 50.66 50.17 49.45 44.21 31.32

Table 7. Ablation for Scaling Factor γ in the Segmentation
Head of Seg-NN.

Kernel Size 8 16 24 32 40 48

Seg-PN 59.67 64.87 66.06 64.84 64.75 63.90

Table 8. Ablation for the Kernel Size and Stride of the local
maximum pooling operation in the QUEST module.

Source S3DIS ScanNet

Target S3DIS ScanNet S3DIS ScanNet

Seg-NN 59.4 43.9 59.4 43.9
Seg-PN 67.6 64.6 63.3 67.0

DGCNN 56.6 44.8 49.4 42.7
AttMPTI 61.6 46.3 49.7 54.0
2CBR 63.5 49.6 54.9 52.3
PAP3D 65.4 52.3 57.0 64.5

Table 9. Transferability among datasets. We report the results
under 2-way-5-shot settings on the S0 split.

two hyperparameters: the kernel size and stride of the lo-
cal maximum pooling, the values of which are set to be the
same. Tab. 8 presents the effect of different kernel sizes.
We observe that the best performance is achieved when the
kernel size is 24, though the experiments in the main paper
are conducted with a kernel size of 32.

3.3. More Analysis

Reduction of ‘seen’/‘unseen’ domain gap. 1) We have
shown that Seg-NN can reduce the ‘seen’/‘unseen’ domain
gap in the main paper’s Fig. 2 (a). We further extend the
experiments in Fig. 2, where the mIoU difference between
‘seen’ and ‘unseen’ classes by our Seg-NN and Seg-PN is
much smaller (DGCNN’s 38% vs our 3.1% and 12.0% on
average). 2) We also show the t-SNE visualization in Fig. 4,
where the 3D features by Seg-NN are more discriminative
among ‘unseen’ classes than DGCNN. This indicates the
‘seen’/‘unseen’ semantic gap can be significantly alleviated
by our encoder. The DGCNN in this experiment is trained
on seen classes and tested on both seen and unseen classes.

Transferability among different datasets. In addition to
the domain gap between the support set and query set, a nat-
ural extension is to investigate the transferability of our non-
parametric model across different data domains. In Tab. 9,
we present the transferring performance between S3DIS [1]
and ScanNet [4] datasets. We train models on the source
dataset and then utilize the target dataset to evaluate the
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Figure 1. Visualization of Results on S3DIS dataset. We compare
Seg-PN’s results with the SOTA PAP3D model.
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Figure 2. ‘Seen’/‘unseen’ Performance Gap. We compare the
performance difference of segmentation on the S3DIS dataset,
where DGCNN shows a large performance difference between
seen and unseen classes.

model. As shown in the table, even trained on S3DIS, our
Seg-PN can attain the best ScanNet performance compared
to all existing methods. The results demonstrate our supe-
rior cross-dataset generalization capacity.

4. Visualization
We present several qualitative results of 2-way-1-shot tasks
in Fig. 1 and Fig. 3. Seg-PN achieves better segmentation
than the existing SOTA, PAP3D [7], which demonstrates
the effectiveness of Seg-PN. It is worth noting that due to
sparse sampling in certain regions of the rooms, some Scan-
Net rooms may appear incomplete, as shown in Fig. 3. All
rooms are presented in a top-down view.

References
[1] Iro Armeni, Ozan Sener, Amir R Zamir, Helen Jiang, Ioannis

Brilakis, Martin Fischer, and Silvio Savarese. 3d semantic

Floor Window Door Wall Sofa Others Floor Bathtub Door Chair Cabinet Others

Point Cloud Ground Truth PAP3D Ours Point Cloud Ground Truth PAP3D Ours

Figure 3. Visualization of Results on ScanNet dataset. We com-
pare Seg-PN’s results with the SOTA PAP3D model.

DGCNN

Unseen Classes

Seg-NN

Seen Classes

Figure 4. t-SNE Visualization of Features on S3DIS, which sug-
gests the non-parametric Seg-NN can extract discriminative em-
beddings for both seen and unseen classes.

parsing of large-scale indoor spaces. In IEEE Conference
on Computer Vision and Pattern Recognition, pages 1534–
1543, 2016. 1, 3

[2] Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter
Hedman, Ricardo Martin-Brualla, and Pratul P Srinivasan.
Mip-nerf: A multiscale representation for anti-aliasing neu-
ral radiance fields. In IEEE International Conference on
Computer Vision, pages 5855–5864, 2021. 1

[3] Anthony Chen, Kevin Zhang, Renrui Zhang, Zihan Wang,
Yuheng Lu, Yandong Guo, and Shanghang Zhang. Pimae:
Point cloud and image interactive masked autoencoders for
3d object detection. CVPR 2023, 2023. 1

[4] Angela Dai, Angel X Chang, Manolis Savva, Maciej Hal-
ber, Thomas Funkhouser, and Matthias Nießner. Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In
IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 5828–5839, 2017. 1, 3

[5] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep
sparse rectifier neural networks. In Proceedings of the Inter-



national Conference on Artificial Intelligence and Statistics,
pages 315–323, 2011. 2

[6] Ziyu Guo, Renrui Zhang, Longtian Qiu, Xianzhi Li, and
Pheng Ann Heng. Joint-mae: 2d-3d joint masked autoen-
coders for 3d point cloud pre-training. IJCAI 2023, 2023.
1

[7] Shuting He, Xudong Jiang, Wei Jiang, and Henghui Ding.
Prototype adaption and projection for few-and zero-shot 3d
point cloud semantic segmentation. IEEE Transactions on
Image Processing, 2023. 1, 4

[8] Dingchang Hu, Siang Chen, Huazhong Yang, and Guijin
Wang. Query-guided support prototypes for few-shot 3d in-
door segmentation. IEEE Transactions on Circuits and Sys-
tems for Video Technology, 2023. 1

[9] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In International Conference on Machine Learn-
ing, pages 448–456, 2015. 2

[10] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,
Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White-
head, Alexander C Berg, Wan-Yen Lo, et al. Segment any-
thing. arXiv preprint arXiv:2304.02643, 2023. 1

[11] Minghua Liu, Yinhao Zhu, Hong Cai, Shizhong Han, Zhan
Ling, Fatih Porikli, and Hao Su. Partslip: Low-shot part seg-
mentation for 3d point clouds via pretrained image-language
models. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 21736–21746,
2023. 1

[12] Gengchen Mai, Krzysztof Janowicz, Yingjie Hu, Song Gao,
Bo Yan, Rui Zhu, Ling Cai, and Ni Lao. A review of loca-
tion encoding for GeoAI: methods and applications. Interna-
tional Journal of Geographical Information Science, 36(4):
639–673, 2022. 1

[13] Yongqiang Mao, Zonghao Guo, LU Xiaonan, Zhiqiang
Yuan, and Haowen Guo. Bidirectional feature globalization
for few-shot semantic segmentation of 3d point cloud scenes.
In International Conference on 3D Vision, pages 505–514,
2022. 1

[14] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. Communications of the ACM, 65(1):99–106, 2021.
1

[15] Zhenhua Ning, Zhuotao Tian, Guangming Lu, and Wenjie
Pei. Boosting few-shot 3d point cloud segmentation via
query-guided enhancement. In Proceedings of the ACM In-
ternational Conference on Multimedia, pages 1895–1904,
2023. 1

[16] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. In IEEE Conference on Computer Vision
and Pattern Recognition, pages 652–660, 2017. 1

[17] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. Advances in Neural Information
Processing Systems, 30, 2017. 1

[18] Guocheng Qian, Yuchen Li, Houwen Peng, Jinjie Mai,
Hasan Hammoud, Mohamed Elhoseiny, and Bernard

Ghanem. Pointnext: Revisiting pointnet++ with improved
training and scaling strategies. In Advances in Neural Infor-
mation Processing Systems, 2022. 2

[19] Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara
Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-
mamoorthi, Jonathan Barron, and Ren Ng. Fourier features
let networks learn high frequency functions in low dimen-
sional domains. Advances in Neural Information Processing
Systems, 33:7537–7547, 2020. 1

[20] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in Neural
Information Processing Systems, 30, 2017. 1

[21] Jiahui Wang, Haiyue Zhu, Haoren Guo, Abdullah Al Ma-
mun, Cheng Xiang, and Tong Heng Lee. Few-shot point
cloud semantic segmentation via contrastive self-supervision
and multi-resolution attention. In IEEE International Con-
ference on Robotics and Automation, pages 2811–2817,
2023. 1

[22] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. ACM Transactions
on Graphics, 38(5):1–12, 2019. 1

[23] Yating Xu, Conghui Hu, Na Zhao, and Gim Hee Lee. Gen-
eralized few-shot point cloud segmentation via geometric
words. In Proceedings of the IEEE International Conference
on Computer Vision, pages 21506–21515, 2023. 1

[24] Canyu Zhang, Zhenyao Wu, Xinyi Wu, Ziyu Zhao, and Song
Wang. Few-shot 3d point cloud semantic segmentation via
stratified class-specific attention based transformer network.
arXiv preprint arXiv:2303.15654, 2023. 1

[25] Renrui Zhang, Ziyu Guo, Peng Gao, Rongyao Fang, Bin
Zhao, Dong Wang, Yu Qiao, and Hongsheng Li. Point-
m2ae: Multi-scale masked autoencoders for hierarchical
point cloud pre-training. NeurIPS 2022, 2022. 1

[26] Renrui Zhang, Liuhui Wang, Yu Qiao, Peng Gao, and Hong-
sheng Li. Learning 3d representations from 2d pre-trained
models via image-to-point masked autoencoders. CVPR
2023, 2023.

[27] Renrui Zhang, Liuhui Wang, Yali Wang, Peng Gao, Hong-
sheng Li, and Jianbo Shi. Parameter is not all you need:
Starting from non-parametric networks for 3d point cloud
analysis. arXiv preprint arXiv:2303.08134, 2023. 1

[28] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and
Vladlen Koltun. Point transformer. In IEEE International
Conference on Computer Vision, pages 16259–16268, 2021.
1

[29] Na Zhao, Tat-Seng Chua, and Gim Hee Lee. Few-shot 3d
point cloud semantic segmentation. In IEEE Conference
on Computer Vision and Pattern Recognition, pages 8873–
8882, 2021. 1, 2

[30] Jianqiao Zheng, Xueqian Li, Sameera Ramasinghe, and Si-
mon Lucey. Robust point cloud processing through posi-
tional embedding, 2023. 1

[31] Guanyu Zhu, Yong Zhou, Rui Yao, and Hancheng Zhu.
Cross-class bias rectification for point cloud few-shot seg-
mentation. IEEE Transactions on Multimedia, 2023. 1


