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Supplementary Material

In this supplementary material, we present additional
information to explain and support our design choices
and their concrete effects in each methodology module of
PURLS. Additionally, we list the remaining experiment per-
formance that we omitted in the main paper and provide a
qualitative visualization of the learning outcome of our so-
lution.

1. Additional Information for Local Semantic
Divison

PURLS aligns local visual semantics with global/body-part-
based/temporal-interval-based descriptions against a given
label. In the submission, we meticulously analyze the spa-
tial and temporal local semantics when they are respectively
extracted, resulting in a total of P + Z + 1 aligned rep-
resentations. Alternatively, if we jointly consider spatial-
temporal semantics, there will be P ∗ Z + 1 aligned repre-
sentations (i.e. finding temporal local movements for each
spatial local area). To streamline computational costs, we
opt for the approach of separately considering spatial and
temporal local semantics.

2. Additional Information for Creating
Description-based Text Features

The descriptions for each label from every evaluation
dataset are provided in the supplement repository under the
path of ‘supplement/gpt3 desc.xlsx’. For body-part-based
local movements, we generated descriptions for four body
areas including ‘Head’, ‘Hands’, ‘Torso’, and ‘Legs’. For
temporal-interval-based local movements, we generated de-
scriptions for three phases including ‘Start’, ‘Middle’, and
‘End’. A manual inspection was applied to ensure that all
descriptions properly enhance the original label semantics.

2.1. Hyperparameter selection for generating de-
scriptions

In the main submission, we used only one question and one
generated answer for each description type when preparing
the text encoding inputs for CLIP. Meanwhile, we also at-
tempted to use varying numbers of questions and answers to
check their influence on the model performance. In Tab. 1,
we present the wrapping prompts for each global/local part
and all the alternative questions we designed for each type
of description generation (see the design explanation in
Sec. 3.2 of our main paper). Tab. 2 records the hyperparam-
eter ablation when we use different numbers of questions

and answers for the generation. When multiple descrip-
tions are generated, we respectively encode each answer
and average all output features to calculate the linguistic
embeddings later used for semantic alignments. Yet, unlike
traditional supervised learning, we observed that including
multiple questions and answers does not improve ZSL clas-
sification in most cases. Therefore, we only use one ques-
tion and one answer for each description in our main exper-
iments.

2.2. Preprocessing for CLIP inputs

A pre-trained text encoder from CLIP requires proper
prompting on its input to ensure the backbone outputs fit the
required downstream tasks. Hence, as shown in Tab. 3, we
prepared customized prompting sentences to further stan-
dardize each generated description before encoding them.

3. Additional Information for Adaptive Parti-
tioning

3.1. Hyperparameter selection for Local Represen-
tations

In the main submission, we choose to align local move-
ments using four body-part-based (BP) partitions and three
temporal-interval-based (TI) partitions (i.e. P = 4, Z = 3).
Tab. 4 provides the hyperparameter ablation when we try
different numbers of spatial/temporal local representations.
In the case of BP, using one body part means directly calcu-
lating the global features along the spatial dimension. Using
two body parts refers to splitting spatial features into upper
and lower body movements. Using six body parts requires
further decomposing hand and leg movements into individ-
ual single-hand and single-leg movements. In the case of
TI, the original sequence is averagely divided into multiple
time intervals according to the specified number. The re-
sults reveal that having four body parts and three temporal
intervals yields the best performance for PURLS.

3.2. Visualization for Adaptive Partitioning

Fig. 1, Fig. 2, Fig. 3, and Fig. 4 visualize the learned weights
for acquiring the corresponding visual representations to-
wards the descriptions for the classes ‘apply cream on face’,
‘running on the spot’, ‘kicking other person’, and ‘cutting
nails’. We analyze the impacts of adaptive partitioning in
four scenarios. Two spatial-based scenarios include learn-
ing the actions characterized by specific local body move-
ments (e.g. ‘applying cream on face’) or the movement from



Description Type Questions

Body-part-based

Using the following format, describe in very short how each body part moves
/ how a person’s body part would act / individual body part action for <Action>.

Head would: {text}
Hands would: {text}
Torso would: {text}
Legs would: {text}

Temporal-interval-based

Use the following format, separate in very short how a person performs the
action of / the motion of / the sub-motions when a person carries

out <Action>into three phases.
1: The person would {text}.
2: The person would {text}.
3: The person would {text}.

Global
Using the following format, describe in very short the motion of a person who / the motion

of a person carries out / how a person does <Action>.
The person would {text}.

Table 1. The full version of the designed questions used to generate label-relative descriptions under different scales. The bold texts
represent the question alternatives, while {text} refers to the blanks for GPT-3 to fill.

# Prompt question # Description per question NTU-RGBD 60 (Acc %) NTU-RGBD 120 (Acc %)
55/5 48/12 40/20 30/30 110/10 96/24 80/40 60/60

1 1 79.23 40.99 31.05 23.52 71.95 52.01 28.38 19.63
2 1 75.44 45.64 26.38 24.72 61.87 45.28 25.10 15.76
3 1 76.90 43.63 26.37 24.67 63.00 43.96 25.01 15.73
1 5 78.50 41.57 27.25 22.02 67.59 44.06 26.32 16.39
1 10 77.7 41.99 27.01 22.33 66.51 44.60 26.56 16.96

Table 2. Hyperparameter ablation (%) of applying different numbers of prompt questions & generated descriptions on GPT-3. ‘# Prompt
question’ refers to the number of used questions. ‘# Desc per question’ means the number of generated descriptions for each question.

the entire body (e.g. ‘running on the spot’). Two temporal-
based scenarios include learning the actions that can be bro-
ken down into sequentially local movements (e.g. ‘kicking
other person’), and the actions that involve repetitive move-
ments (e.g. ‘cutting nails’). To showcase the different learn-
ing focus in a more intuitive manner, we demonstrate the
respective feature sampling weight of each body joint on
every temporal dimension.

Adaptive partioning for spatially local movements:
For the actions characterized by specific local body move-
ments (Fig. 1), against body-part-based descriptions (Row
1-4 in each phase), adaptive partitioning effectively high-
lights the feature sampling from the body joints belonging
to the ‘hands’. It also assigns contextual significance to a
few body-joint features from the ‘torso’ and ‘legs’ during
the middle phase, as some co-movements may exist when
raising arms to one’s face. The local representation of hand
movements emphasizes these features the most. The repre-
sentations for other descriptions learn each joint feature in
a more averaged manner while still giving the most impor-
tance to hand features, as they become the most valuable
context features. Against the actions characterized by the
entire body movement (Fig. 2), we find the module more
averagely samples the body-joint-level features for each de-
scription.

Adaptive partioning for temporally local movements:
For the actions that can be broken down into sequentially
local movements (Fig. 3), against temporal-interval-based
descriptions (Row 5-7 in each phase), adaptive partitioning
emphasizes the overall features in the third phase, which
contains the most representative postures of the kicking
movement. The representation for the ‘end’ phase assigns
the highest weights to these features to represent its local
description as ‘Strike other person.’ Meanwhile, multiple
hand-related features are collected with higher priority in
the first two phases, while some leg-related features are also
collected in the second phase. This implies that PURLS
also allocates attention to sampling the hand and leg move-
ments for representing the descriptions of ‘Raise leg’ and
‘Extend foot’. Against the actions that repeat temporally
local movements (Fig. 4), we observe a relatively balanced
distribution of learning focus. In particular, the distribu-
tion tends to concentrate slightly more in the first phase.
We believe this is because most relevant visual information
is already available at the beginning. On the other hand,
the ending phase may contain noises from the zero-padding
frames.



Description Type Prompts
A cropped video of people’s head motions that <Description>.
A cropped video of people’s hand motions that <Description>.
A cropped video of people’s torso motions that <Description>.Body-part-based

A cropped video of people’s leg motions that <Description>.
Temporal-interval-based A trimmed video of the motion that <Description>.

Global A video of people’s motion that <Description>.

Table 3. The customized prompts used to wrap each description before it is sent to CLIP.

Figure 1. Visualized illustration of the learned adaptive weights used for sampling joint features to generate the visual representation of
each description on ‘apply cream on face’. The horizontal axis lists each body joint, and the vertical axis is the convoluted temporal
dimension with a length of L′. We trunk the temporal dimension into three groups for the phases of ‘start’ (1), ‘middle’ (2), and ‘end’ (3).
And we label the default body part that each body joint usually belongs to according to Fig. 3 in our main paper. For the demonstration
in one phase, from top to bottom is the feature weight distribution against the description for body-part-based (‘head’, ‘hands’, ‘torso’,
‘legs’), temporal-interval-base (‘start’, ‘middle’, ‘end’), and global semantics.

BP TI NTU-RGBD 60 (Acc %) NTU-RGBD 120 (Acc %)
55/5 48/12 40/20 30/30 110/10 96/24 80/40 60/60

1 3 77.70 40.69 28.84 22.46 71.26 46.13 24.43 18.57
2 3 78.31 33.15 30.81 23.03 72.77 45.90 26.26 19.65
4 3 79.23 40.99 31.05 23.52 71.95 52.01 28.38 19.63
6 3 72.18 37.65 30.10 23.35 62.67 47.81 26.39 18.78
4 1 76.32 37.62 29.06 21.91 71.73 40.92 23.49 19.13
4 3 79.23 40.99 31.05 23.52 71.95 52.01 28.38 19.63
4 6 74.54 38.89 28.70 23.03 71.00 48.81 26.11 17.71

Table 4. Hyperparameter ablation (%) on NTU-RGB+D 60 and
NTU-RGB+D 120 of (1) using different numbers of body-part-
based (BP) local partitioning, (2) using different numbers of
temporal-interval-based (TI) local partitioning.

4. Additional Information for Experiments
4.1. Seen/unseen Split Setups

The specific lists of seen/unseen classes in each experi-
ment split are provided as numpy files in the supplement

repository under the path of ‘supplement/label splits’. Each
split setting belongs to one of the following dataset fold-
ers: ‘ntu60’, ‘ntu120’, ‘kinetic200’, ‘kinetic400’, ‘nw-
ucla’, ‘utd-mhad’, ‘uwa3dii’. The first three datasets are
the ones we focus on in the main paper. For a given split,
the file that contains the corresponding unseen class list
is named as ‘ru + the number of unseen classes’. Sim-
ilarly, the file recording the corresponding seen classes
is named as ‘rs + the number of seen classes’. For
example, for the split with 55 seen classes and 5 un-
seen classes on the NTU-RGB+D 60 dataset, the corre-
sponding seen and unseen class lists are recorded in the
files of ‘supplement/label splits/ntu60/rs55.npy’ and ‘sup-
plement/label splits/ntu60/ru5.npy’.



Figure 2. Visualized illustration of the learned adaptive weights for the class ‘running on the spot’.

Figure 3. Visualized illustration of the learned adaptive weights for the class ‘kicking other person’.

4.2. Extra Visualization for Experiment Results

Fig. 5, Fig. 6 and Fig. 7 visualize the accuracy gaps
and changing curves of every baseline and PURLS when
predicting different numbers of unseen classes on NTU-
RGB+D 60, NTU-RGB+D 120, Kinetic-skeletons 200. Our
method reaches state-of-the-art prediction accuracies in ev-
ery experimental setting. The performance conclusion on
each dataset is consistent with the analysis in Sec. 4.3 of
our main paper.

4.3. Full Ablation Results

Tab. 5 and Tab. 6 add extra results for the experiment setups
we used for ablation study (see Sec. 4.4 of our main paper)
on the Kinetic-skeletons 200 dataset.

4.4. Other Experiment Results

Kinetic-skeleton 400: We provide Tab. 7 to record the per-
formance results of ReViSE, DeViSE, Global, and PURLS
on Kinetics-skeleton 400 (See the dataset description in



Figure 4. Visualized illustration of the learned adaptive weights for the class ‘cutting nails’.

NTU-RGBD 60 (Acc %) NTU-RGBD 120 (Acc %) Kinetic 200 (Acc %)Partitioning Strategy 55/5 48/12 40/20 30/30 110/10 96/24 80/40 60/60 180/20 160/40 140/60 120/80

Global (Original) 64.69 35.46 27.15 16.29 66.96 44.27 21.31 14.12 25.96 15.85 10.23 7.77
Global (GPT-3) 78.50 33.47 29.21 22.27 64.89 47.15 25.16 17.46 24.44 14.08 8.31 7.06

Static Partitioning 76.46 33.03 29.57 22.00 67.62 46.83 26.98 18.03 24.04 15.60 8.14 7.74
Adaptive Partitioning 79.23 36.77 31.05 23.52 71.95 52.01 28.38 19.63 32.22 22.56 12.01 11.75

Table 5. Full ablation study (%) on NTU-RGB+D 60, NTU-RGB+D 120, and Kinetics-skeleton 200 for using different alignment learn-
ing with partitioning strategies, including direct global feature alignment to label or global description semantics, and PURLS with
static/adaptive partitioning.
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Figure 5. Visualized accuracy variation on NTU-RGB+D 60.

Sec. 4.1 of our main paper). Fig. 8 visualizes the accuracy
gaps and changing curves of every baseline and PURLS.
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Figure 6. Visualized accuracy variation on NTU-RGB+D 120.

We created four splits of 360/40, 320/80, 300/100, and
280/120 for evaluation. These setups are replaced with



αi BP TI NTU-RGBD 60 (Acc %) NTU-RGBD 120 (Acc %) Kinetic 200 (Acc %)
55/5 48/12 40/20 30/30 110/10 96/24 80/40 60/60 180/20 160/40 140/60 120/80

- 78.50 33.47 29.21 22.27 64.89 47.15 25.16 17.46 24.44 14.08 8.31 7.06

Average ✓ 76.68 37.80 30.92 22.20 68.11 30.93 24.36 18.67 22.32 7.12 3.63 5.60
Learnable ✓ 76.32 37.62 29.06 21.91 71.73 40.92 23.49 19.13 22.73 14.79 8.24 7.69

Average ✓ 78.65 38.80 28.14 22.69 55.73 50.67 27.50 17.50 21.81 20.04 8.61 6.81
Learnable ✓ 77.70 40.69 28.84 22.46 71.26 46.13 24.43 18.57 24.85 18.73 7.97 7.95

Average ✓ ✓ 79.02 39.92 31.00 23.47 73.55 51.38 27.67 18.66 26.87 21.10 10.03 11.55
Learnable ✓ ✓ 79.23 40.99 31.05 23.52 71.95 52.01 28.38 19.63 32.22 22.56 12.01 11.75

Table 6. Full ablation study (%) on NTU-RGB+D 60, NTU-RGB+D 120 and Kinetics-skeleton 200 for (1) using different αi (i ∈ [0, P +
Z+1)) to sum for Ltrain, (2) adding body-part-based (BP) alignment learning, (3) adding temporal-interval-based (TI) alignment learning.
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Figure 7. Visualized accuracy variation on Kinetics-skeleton 200.
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Figure 8. Visualized accuracy variation on Kinetics-skeleton 400.

a similar but simpler testing protocol on Kinetics-skeleton
200.

Small-scale datasets: Tab. 8 records the performance
of ReViSE, DeViSE, Global, and PURLS on multiple
small-scale datasets, including NW-UCLA, UTD-MHAD,
and UWA3D II (respectively containing 10, 27 and 10 com-

Model Kinetic 400 (Acc %)
360/40 320/80 300/100 280/120

ReViSE 20.84 11.82 9.49 8.23
DeViSE 18.37 10.23 9.47 8.34
Global 22.50 15.08 11.44 11.03
PURLS 34.51 24.32 16.99 14.28

Table 7. Zero-shot action recognition results (%) on Kinetics-
skeleton 400 for PURLS & all available baselines introduced in
Sec. 4.2 of our main paper.

Model NW-UCLA UTD-MHAD UWA3D II
8/2 5/5 22/5 18/9 14/13 24/6 20/10 15/15

ReViSE 69.12 44.99 29.37 19.86 12.26 30.33 10.91 10.43
DeViSE 72.81 36.02 12.50 13.59 13.94 34.16 12.51 11.41
Global 73.49 46.83 23.00 18.47 14.38 32.18 15.63 11.02

PURLS 75.84 49.47 57.50 31.71 19.23 35.65 18.91 13.98

Table 8. Zero-shot action recognition results (%) on NW-UCLA,
UTD-MHAD and UWA3D II for PURLS & all available baselines.

mon daily action classes). As shown in the table, PURLS
also outperforms other baselines in these testing environ-
ments where a minimal semantic overlap between seen and
unseen classes makes zero-shot recognition more challeng-
ing.
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