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A. Joint Learning of MisD and OOD Detection
When jointly learning objectives of CRL and LogitNorm,
the OOD detection ability could be improved, but the MisD
performance is decreased observably. The results in Table
A1 show that a similar phenomenon can be observed when
combining MisD method FMFP [14, 16] and LogitNorm.
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Figure A1. Average confidence of InD (correct), InD (wrong) and
OOD examples with different training objectives. The dataset is
CIFAR-100 and the model is ResNet110.

Different levels of sensitivity. Why jointly learning CRL
or FMFP with LogitNorm is useless for unified failure de-
tection? To understand this problem, we identify that mis-
classified and OOD examples might have different levels of
sensitivity, leading to conflict during training. Figure A1
plots the average confidence of InD (correct), InD (wrong)
and OOD examples with different training objectives. As
can be observed, for the CE baseline, the relation of aver-
age confidence is InD (correct) > OOD > InD (wrong); for
MisD methods like CRL and FMFP, the relation of aver-
age confidence is the same as that of CE baseline; while
for OOD detection methods such as LogitNorm and OE
[8], the relation of average confidence is InD (correct) >
InD (wrong) > OOD. The above results indicate that mis-
classified examples are more sensitive than OOD examples
when using MisD learning objectives, and OOD examples
are more sensitive than misclassified examples when using

Table A1. Combining MisD and OOD detection objectives is use-
less for unified failure detection. The model used is ResNet110.

Dataset Method
MisD OOD Detection

AURC↓ FPR95↓ AUROC↑ FPR95↓ AUROC↑

CIFAR-10
CE 8.96 45.72 90.43 39.54 89.86
FMFP 5.26 20.29 94.01 20.03 94.13
FMFP+LN 13.29 44.06 84.12 33.60 91.38

CIFAR-100
CE 90.38 52.07 84.80 70.14 73.29
FMFP 67.91 40.86 86.86 68.46 72.91
FMFP+LN 126.87 75.35 73.16 49.47 84.12
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Figure A2. MisD performance on ImageNet-200 with ResNet50.
The proposed RCL can maintain the performance of MisD when
improving OOD detection performance.

OOD detection learning objectives. Therefore, combining
them might lead to conflicts.

B. Evaluation on the ImageNet
Setup. We train on ImageNet-200 [3] with resolution 224
× 224 using a ResNet50 backbone [5]. We train 90 epochs
using SGD with momentum 0.9, weight decay 1e-4 and
batch-size 256. The start learning rate is 0.1 and decays by
a factor of 10 at epochs 30 and 60, respectively. For OOD
detection, the OOD datasets include iNaturalist [9], SUN
[12], Places [13] and Textures [2] with non-overlapping cat-
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Table A2. MisD, OOD detection and unified failure detection performance on ImageNet-200 using a ResNet50 backbone.

Method MisD OOD Detection Failure Detection ID-ACC
AURC↓ FPR95↓ AUROC↑ FPR95↓ AUROC↑ AURC↓ FPR95↓ AUROC↑

MSP 32.69 34.50 90.34 42.36 86.29 243.05 32.60 91.67 83.49
MaxLogit 49.86 59.77 84.04 38.01 89.47 246.47 37.00 91.83 83.49
Energy 51.77 61.01 83.13 38.16 89.64 248.05 37.72 91.55 83.49
LogitNorm 43.20 51.00 86.91 29.91 91.80 232.90 27.28 94.11 83.13

PwF 36.57 39.13 89.31 35.66 89.65 234.47 28.11 93.40 83.51
RCL 31.52 34.56 90.43 39.49 87.88 235.62 30.42 92.61 83.94

Table A3. Comparison of MisD, OOD detection and unified failure detection performance when tuning different parts of the network.
Results are obtained on ResNet110 trained on CIFAR-100.

Method MisD OOD Detection Failure Detection ID-ACC
AURC↓ FPR95↓ AUROC↑ FPR95↓ AUROC↑ AURC↓ FPR95↓ AUROC↑

MSP 90.38 52.07 84.80 70.14 73.29 143.68 56.82 83.60 73.04

CRL 76.93 41.40 86.92 73.05 71.97 139.17 56.25 84.16 73.92
w/ BN 76.46 42.08 87.16 70.67 72.85 136.27 54.06 84.90 73.81
w/ Block 3 85.93 45.85 86.16 62.26 77.34 130.78 48.94 87.24 72.59
w/ Full 80.56 46.68 86.14 56.82 80.95 123.90 46.98 87.73 74.04

FMFP 67.25 40.86 86.86 68.46 72.91 132.87 52.94 84.18 75.87
w/ BN 67.04 41.45 87.03 67.54 72.98 132.52 52.68 84.26 75.82
w/ Block 3 71.21 41.29 86.89 62.90 75.70 128.59 49.59 85.44 74.98
w/ Full 67.91 43.09 87.11 59.63 79.12 122.69 47.46 86.75 75.71
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Figure A3. Selective layer tuning on (a) CRL and (b) FMFP.

egories w.r.t. ImageNet. The averaged result over those four
OOD datasets is reported. For unified failure detection, we
keep the same number of misclassified and OOD examples.
Since the MSP score with CE training objective has been
verified to be the state-of-the-art failure detection approach
[1, 10], we directly tuning the CE baseline.

Results. In Figure A2 and Table A2, we can find that
MaxLogit, Energy and LogitNorm ruin the performance of
CE baseline with MSP. Our method can successfully im-
prove OOD detection performance while maintaining the
MisD ability. Since we keep the same number of OOD

and misclassified examples when evaluating unified failure
detection, strong OOD detection method LogitNorm could
achieve good failure detection performance. However, its
MisD ability is much worse than CE baseline, which is
undesirable in practice because misclassified InD exam-
ples widely exist and should be detected and rejected effec-
tively. Overall, our approach achieves a good balance be-
tween MisD and OOD detection and outperforms the previ-
ous state-of-the-art method (i.e., CE baseline) consistently.

C. Selective Layer Tuning
In Section 5.2, we show that the proposed reliable contin-
ual learning paradigm can be performed in a more efficient
way by only tuning selective informative layers in a deep
neural network based model. Here we provide more results.
Figure A3 compares the performance (AUROC) of MisD,
OOD detection and failure detection (FD) when tuning dif-
ferent layers of ResNet110 on CIFAR-100. We can find
that: (1) Only tuning Batch-Normalization (BN) layers ben-
efits MisD, while leaving little freedom to acquire OOD de-
tection ability; (2) Tuning Black 3 that contains those layers
with rich semantic knowledge (near the output of a model)
is effective for improving OOD detection performance. De-
tailed results are provided in Table A3.



Table A4. Detecting failures in distribution shifts scenario. Mod-
els are trained on clean training dataset with ResNet110.

Severity Method CIFAR-10-C CIFAR-100-C

AURC↓ FPR95↓ AUROC↑ AURC↓ FPR95↓ AUROC↑

#1
MSP 52.97 58.00 85.41 206.49 59.52 80.87
ours 39.63 33.19 89.32 188.32 56.43 82.24

#5
MSP 311.51 75.64 72.85 537.26 72.57 73.62
ours 249.88 57.42 78.08 506.60 69.84 74.82

D. Failure detection under Distribution Shift
As suggested by recent works [10, 14–16], a more general
failure detection should include detecting failures in distri-
bution shifts scenarios like image corruptions [7] and iWild-
Cam [11]. Table A4 shows that our method performs re-
markably better than MSP baseline on distribution shifted
dataset CIFAR-10-C and CIFAR-100-C [7], demonstrating
its effectiveness in more general failure detection setting.

Table A5. How the order of learning MisD and OOD detection
impacts the effectiveness of our method. CIFAR-100 / ResNet110.

Method AURC↓ FPR95↓ AUROC↑
MSP 143.68 56.82 83.60
OOD⇒MisD 134.48 56.50 85.63
MisD⇒OOD 123.90 46.98 87.73

Table A6. Using OE as OOD detection method in our RCL frame-
work. CIFAR-100 / ResNet110.

Method AURC↓ FPR95↓ AUROC↑
CRL 139.17 56.25 84.16
ours (FMFP-OE) 116.64 44.75 87.61
ours (CRL-OE) 119.07 43.67 88.15

E. Analysis and Discussion
Order of learning MisD and OOD detection. Table
A5 presents the performance of unified failure detection
on CIFAR-100 when tuning an OOD detector using MisD
method, and our framework still outperforms MSP. We also
note that MisD⇒OOD performs better than OOD⇒MisD.
We suspect that this is because OOD methods often have
negative effect on MisD [10, 14, 15], which consumes part
of the MisD performance when tuning model with MisD
later. Nevertheless, our approach provides a simple and ef-
fective way to achieve the challenging goal of unified failure
detection.

Using OE as OOD detection method in RCL. Table A6
reports the performance of our method when using outlier-
based OE [6] as the OOD detection technique in the pro-
posed reliable continual learning framework. As can be ob-
served, our method yields stronger performance.

Table A7. Failure detection performance with different λ. CIFAR-
100 / ResNet110.

Metric λ = 1e2 1e3 2.5e3 5e3 1e4 5e4 1e5

AURC↓ 122.66 124.96 122.65 121.71 123.90 121.90 124.15
FPR95↓ 46.30 47.27 45.13 45.36 46.98 45.44 47.13
AUROC↑ 87.44 87.13 87.61 87.69 87.73 87.49 86.97

Table A8. Experimental results of training ViT on CIFAR-100.

Method AURC↓ FPR95↓ AUROC↑
MSP 29.25 29.54 92.68
ours 28.96 28.61 93.08

Failure detection performance with different λ. Al-
though the results of MisD and OOD detection ability vary
according to λ (this also gives us a chance to flexibly control
the ability of MisD and OOD detection), the unified failure
detection performance is quite stable as shown in Table A7.

ViT experiments. We conduct experiments by tuning su-
pervised (ImageNet21K) pretrained ViT [4] on CIFAR-100.
Particularly, we find that the supervised pretrained ViT
model has strong failure detection ability, and the OOD de-
tection ability can not be further improved with LogitNorm.
Therefore, we tune it with FMFP [14] and stronger OOD
detection method OE [6]. Table A8 reports unified failure
detection results, verifying the effectiveness of our reliable
continual learning framework.
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