Retrieval-Augmented Embodied Agents

Supplementary Material

6. Limitations

Our research introduces retrieval-augmented embodied
agents, equipping robots with access to an external pol-
icy memory bank to enhance policy learning. While our
method has been evaluated in real-world environments and
two simulated benchmarks, its performance in untested en-
vironments remains uncertain. Additionally, it’s important
to highlight that our real-world experiments were conducted
using a Franka Emika Robot, and results may vary with
different robotic systems. Our approach relies on Open
X-Embodiment [46]. Utilizing alternative external policy
memory banks could lead to differing outcomes. The real-
world environment we used is distinct from this project and
is planned for release upon publication.

7. More Experiments
7.1. Datasets

In our simulation, we utilize two distinct datasets:

* Franka Kitchen [22] is focused on tasks such as sliding
open the right door, opening a cabinet, turning on a light,
adjusting the stovetop knob, and opening a microwave.
Each demonstration includes 50 state-action pairs, mak-
ing the demonstration length 50.

* Meta-World [74] presents a challenging array of tasks re-
quiring advanced object manipulation skills. These tasks
include assembling a ring on a peg, picking and placing a
block between bins, pushing a button, opening a drawer,
and hammering a nail.

7.2. Implementation Details

In our retrieval module R, we use the off-the-shelf Image-
Bind [23] model for both the query and memory encoders
Eq and E)p;. We use FAISS [31] to index the external
memory M (Flat Index) and perform MIPS-based retrieval.
For our policy generator G, we use a Transformer as de-
picted in the aforementioned section. We maximize take up
to 3 policies. At inference time, we also retrieve and add
1 < K <= 3 policies. The model is trained on A100 80G
GPUs, implemented in PyTorch [48]. For all experiments,
we use behavior cloning with mean squared loss as the opti-
mization objective. The Franka-Kitchen is trained for 40K
steps, while Maniskill-2 is trained for 20K steps. We use
weight decay of le-6, cosine learning rate scheduler with
warmup steps of 5% total steps. The gradient clip is also
applied. We use Adam optimizer with initial learning of
le-3 and 3e-4 for Franka Kitchen and Maniskill-2, respec-
tively. For the policy generator in simulated environments,

Table 5. Ablation study on in-context learning ability in terms of
manipulation on novel objects.

Methods ‘ Objects ‘ Success Rate
RAEA Unseen 27
Without policy memory bank | Unseen 6

Table 6. Ablation study on in-context learning ability in terms of
manipulation on few-shot tasks.

Methods ‘ Training ‘ Success Rate
RAEA Few-shot 18
Without policy memory bank | Few-shot 2

we use five blocks, while in real-world experiments, we use
3 Transformer blocks.

7.3. Ablation Study

This section includes more experiments.

In-context learning ability for RAEA: Novel object. A
primary advantage of the RAEA framework is its access
to an external memory bank, potentially containing objects
not included in the training datasets. We assessed RAEA’s
capability to manipulate objects unseen during training,
viewing the retrieved policy as an in-context example for
policy networks. Our experiments involved 10 objects not
encountered during training, with each object undergoing
10 trials. The average success rate across all objects is
documented in Table 5. While performance did decrease
when dealing with unseen objects compared to those
encountered during training, it is noteworthy that our
method, equipped with a policy memory bank, achieved a
21% higher success rate than the baseline method that lacks
this feature. This improvement is attributed to the baseline
method’s sole reliance on instruction-observation mapping
to identify novel objects, which can be challenging.

In-context learning ability for RAEA: Few-shot tasks.
We also conducted an evaluation of our method on few-shot
tasks, selecting five specific tasks trained with only five
examples each. For each task, we executed ten trials and
reported the average success rate across these five tasks.
As observed in Table 6, utilizing the policy memory bank
significantly enhances performance compared to not using
it. We attribute this improvement to our in-context samples



Table 7. Ablation study on cross-attention.

Methods Success Rate
Cross-Attention 54
FiLM [50] 47
Direct concatenation 10

aiding the model in recognizing and executing these tasks
effectively.

Importance of Cross-Attention in Policy Generator. A
crucial element of our policy generator is the incorporation
of cross-attention mechanisms to integrate instruction
and observation data. We compared our method with
FiLM [50], a common technique for merging language
and visual inputs, and also employed in RT1 [6]. We
also examined the approach of directly concatenating
input tokens. As indicated in Table 7, utilizing cross-
attention resulted in a 7% higher success rate compared
to FiLM, and remarkably, its performance was 44% supe-
rior to that achieved through direct concatenation of inputs.

Importance of Diversity in Policy Retriever. As high-
lighted in §3.2, maintaining diversity in the policy retriever
is crucial for the effectiveness of our method. Specifically,
we discard 70% of the retrieved policies, which usually
originate from similar trajectories. Our findings reveal
that without dropping these similar tokens, the success
rate plummets to 4%. This significant decrease is largely
attributed to the data structure commonly used in robotics,
where datasets often comprise multiple frames. In most
of these frames, the background remains static, leading to
repetitive and uninformative data. This redundancy can
impede the training process by overwhelming the model
with non-essential information.



	. Limitations
	. More Experiments
	. Datasets
	. Implementation Details
	. Ablation Study


