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This supplementary material includes five parts:
• Part 1 shows more visual comparison results in real-world reflection scenes.
• Part 2 shows the quantitative comparison results on the subsets of SIR2 [7].
• Part 3 shows the model efficiency comparisons of different reflection removal methods.
• Part 4 shows the data collection process with our proposed pipeline.
• Part 5 shows the misalignment and artifacts brought by the previous dataset collection pipelines [4–6, 11].
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Part 1: More visual vomparison results
In this part, we provide the visual comparisons with FRS [10], IBCLN [6], YTMT [2], LANet [1] and DSRNet [3]. All

reflection images in this paper are from real-world reflection scenes. For example, Figure A1 A2 from the testing dataset [6];
Figure A3 A4 A5 A6 A7 A8 from [9],which provides various reflection images.
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Figure A1. Visual comparisons with SOTA methods on real reflection scenes.
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Figure A2. Visual comparisons with SOTA methods on real reflection scenes.
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Figure A3. Visual comparisons with SOTA methods on real reflection scenes.
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Figure A4. Visual comparisons with SOTA methods on real reflection scenes.
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Figure A5. Visual comparisons with SOTA methods on real reflection scenes.
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Figure A6. Visual comparisons with SOTA methods on real reflection scenes.
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Figure A7. Visual comparisons with SOTA methods on real reflection scenes.
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Figure A8. Visual results of ours on real reflection scenes. Left is the reflection image, and right is the estimated result.



Part 2: Quantitative comparison results on the subsets of SIR2 [7]

SIR2 [7] are specifically proposed for evaluating the performance of reflection removal in real-world scenes, including
three subsets: wild(55), postcard(199) and solid(200). These subsets include a wide range of reflection scenes, collected
using different aperture sizes and varying glass thicknesses

Table A1. Quantitative comparisons on the subsets of real reflection benchmark [7]. The best results are in bold.

Methods Venue wild(55) postcard(199) solid(200)

PSNR SSIM PSNR SSIM PSNR SSIM
Input Image - 25.97 0.90 20.94 0.87 23.68 0.89
FRS [10] CVPR 20219 23.95 0.87 20.92 0.86 23.04 0.87
ICBLN [6] CVPR 2020 24.41 0.89 23.25 0.88 24.75 0.89
YTMT [2] NerIPS 2021 25.23 0.89 2.23 0.88 24.46 0.90
LANet [1] ICCV 2021 25.89 0.90 21.27 0.89 24.00 0.90
PNACR [8] ACM MM 2023 25.69 0.90 23.11 0.89 24.73 0.89
DSRNet [3] ICCV 2023 24.36 0.89 23.96 0.89 26.01 0.92

Ours - 26.48 0.91 24.05 0.89 26.62 0.93

Part 3: The model efficiency comparisons
Table A2. The model efficiency comparisons. FLOPs is calculated based on inputs with a resolution of 256 × 256 × 3.

Methods ERRNet [9] YTMT [2] LANet [1] DSRNet [3] Ours
Network Parameters (M: 106) 31.52 32.66 10.93 9.84 29.09

FLOPs (G: 109) 439.45 179.97 334.5 97.30 17.55



Part 4: Data collection process with our proposed pipeline

In Figure A10, we present a detailed visual illustration of our collection procedure using the proposed pipeline. Specifi-
cally, we would like to delineate each step of the collection process for enhanced clarity and understanding.
• Step 1: Set up the tripod and camera device in front of the reflective surfaces, like the glass scene shown in Figure A10.
• Step 2: Turn on the video recording mode on the camera device and set the camera to manual focus mode.
• Step 3: As illustrated in Figure A10(a), on the camera side, use a black cloth to block the reflective lights(including

the global ambient light and local object light in Figure A9), then initiate video recording using a remote controller.
Empirically, the frames from the first one or two seconds of the recording can be employed as the transmission image T.
At this step, only background light enters the camera device.

• Step 4: Remove the black cloth. As shown in Figure A10(b), we can capture the reflection images(I), and modulate the
reflected interference content by manipulating the reflections through the manual obstruction.

• Step 5: In addition to the dynamic scenes in the reflective environment, we can also modify the objects within the environ-
ment or introduce new objects to adjust the reflection contents. This largely enriches the diversity of the reflection contents
and obtain multiple reflection images (I1, ..., In) corresponding to T.

• Step 6: The captured videos typically range from 30 seconds to 150 seconds. For post-processing of recorded videos, we
commonly select the average of the frames at the beginning as the transmission image. As for the reflection frames, we use
a uniform sampling method to obtain reflection images with varying reflection contents. We Empirically sample every 20
frames or 30 frames to effectively avoid redundancy of similar reflection frames.
In contrast, to avoid misalignment and color distortion, prior pipelines [6, 7, 11] have to employ removable, relatively

thin, and colorless glass for data collection. Furthermore, methods [4, 5] require data collection in RAW data format. By
not imposing these constraints, our proposed pipeline offers a more cost-effective manner of acquiring large-scale aligned
reflection pairs, which also is applicable to a variety of reflective surfaces such as building glasses, car glass windows, display
glass, framing glass, and self-prepared glass.
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Figure A9. Simplified illustrations of our collection pipeline.(Ii: reflection image; T: Transmission Image).
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Figure A10. Illustration of our collection process with our proposed pipeline.



Part 5: Misalignment and artifacts brought by the previous pipelines

In our manuscript, we argue that the pipeline [6, 11] may introduce spatial misalignment in the reflection pairs due to glass
refraction. To make the results clearer, we attempt to demonstrate this misalignment issue in the gradient domain. This is
based on the fact that if there is a misalignment in the reflection image pair, then when subtracting the reflection image pair
in the gradient domain, it is easy to produce double-edged results, as verified in Figure A11.
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Figure A11. Illustration of misalignment issue in the pipeline [6, 11].

Moreover, we also noticed that their transmission images might leave minor reflection remnants with other data collection
pipelines [4, 5]. Here, we provide some visual examples to verify the artifacts brought by their pipeline in Figure A12.
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Figure A12. Illustration of the artifact issue in the pipeline [4, 5]. The reflection remnants and artifacts are obvious in the red
boxes.
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