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The supplementary material contains: 1) more implemen-
tation details about our proposed Diffusion Transformer with
Self-supervised Discrimination (SD-DiT) in Sec. 1; 2) the
pseudocode of SD-DiT in Algorithm A1; 3) the qualitative
visualization results of SD-DiT-XL/2 in Fig. A1.

1. Implementation Details
In contrast to DiT [4] and MDT [2] whose settings are de-
rived from the ADM formulation [1], our SD-DiT employs
the formulation of EDM [3] in order to construct the dis-
criminative pairs according to the theory of the consistency
function (Eq.(7) in main paper) [6] based on the PF-ODE (Eq.
(4) in main paper) of EDM. Specifically, we adopt the EDM
preconditioning parameterization by using a σ-dependent
skip connection1:

Dθ(xxx;σ) = cccskip(σ) xxx+ cccout(σ) Fθ

(
cccin(σ) xxx; cccnoise(σ)

)
. (1)

This preconditioning parameterization is a common practice
to avoid large variation in gradient magnitudes brought by
various noise levels. As shown in Eq. (1), the denoiser Dθ

is not directly employed as a neural network. Instead, a
different network Fθ is trained to learn Dθ. In our SD-
DiT, the student branch is wrapped as Dθ in Eq. (1) with
skip connection preconditioning. For simplicity, we did
not introduce this parameterization in the main paper. We
follow the default hyper-parameters of EDM for the skip
connection cccskip(σ), the noise level cccnoise(σ) and the input
cccin(σ) and output magnitudes cccout(σ). Besides, the student
noise distribution pσS follows the pσtrain in EDM’s setting:

ln(pσS) ∼ N (Pmean, Pstd), (2)

where Pmean = −1.2 and Pstd = 1.2. Note that we draw the
approximate log-normal probability density distribution (i.e.,
the black dashed line in Fig. 6 in main paper) of the corre-
sponding σS according to this Eq. (2). During the sampling
stage, we use the default time steps schedule of EDM:

σi<N =
(
σmax

1
ρ + i

N−1
(σmin

1
ρ − σmax

1
ρ )
)ρ
, σN = 0, (3)

1Please refer to EDM [3] for more comprehensive details.

where sampling steps N = 40, ρ = 7, σmin = 0.002 and
σmax = 80. Following EDM, we utilize the second-order
Heun ODE solver for sampling. We follow the paradigm of
LDM [5] to perform diffusion generation in the latent space
of the frozen pre-trained VAE model [5], which downsam-
ples a 256×256×3 image into a 32×32×4 latent variable.
More implementation details can be referred in Tab. A1.
Network parameters. The teacher-student design will
double the parameters of a typical DiT. But at inference,
the teacher network will be removed, and thus no parameter
burden is introduced. In this sense, the model size of learned
SD-DiT-XL/2 is 740.6M, which is comparable to MaskDiT-
XL/2 (730.1M). During training, the additional teacher net-
work is directly updated by EMA without SGD backward
propagation, thereby only requiring extremely lightweight
computational cost compared to standard backward prop-
agation. At inference, the teacher network is completely
removed and no burden is introduced.

Table A1. Configs for training SD-DiT on 256×256 ImageNet-1K.

Configs SD-DiT-S/2 SD-DiT-B/2 SD-DiT-XL/2

total batch size 256
learning rate 1e-4
training iterations 400k 400k 2400k
optimizer AdamW with β1, β2=0.9, 0.999
EMA momentum from 0.996 to 0.999
student temperature 0.1
teacher temperature from 0.09 to 0.099 (warmup 5 epochs)

2. Additional Experimental Results
How about training with a larger batch size? MaskDiT-
XL/2 attains the best FID score with fewer training steps,
attributed to a large batch size of 1024. For a more com-
prehensive comparison, we experiment by training SD-DiT-
XL/2 with 1024 batch size, and the FID is 16.78 (150k
steps), which is better than MaskDiT-XL/2 (FID: 17.22 at
150k steps) [7].
Comparison at higher iterations. We experiment by train-
ing SD-DiT-XL/2 with higher iterations (3500k), and the
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Figure A1. Qualitative results of our SD-DiT-XL/2. Label of each
row (from top to bottom): Daisy, Giant panda, Lakeside, Eskimo
dog, Minibus, Tiger shark, Suspension bridge.
FID is 6.74, which is comparable to MDT-XL/2 (FID: 6.65,
3500k) [2]. It is worth noting that, compared to , our SD-
DiT-XL/2 only uses 45GB memory per GPU with faster
training speed (much lower than the memory requirement
of MDT-XL/2 [7]), leading to a better computational cost-
performance trade-off.
Classifier-free guidance (CFG) results. We also experi-
ment by upgrading our SD-DiT with CFG, and the FID of
SD-DiT-XL/2 (+CFG) is 3.23, which is better than MaskDiT-
XL/2 (without the unmask tuning stage) with CFG (FID:
4.54) [7].

3. Pytorch-like Pseudocode for SD-DiT
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Algorithm A1 Pytorch-like Pseudocode of SD-DiT
# Sθ,T ′

θ: student & teacher DiT encoder
# Gθ: student DiT decoder
# jθ, jθ′: student and teacher MLP projection head
# C_cls: center (K) for cls dicrimitive loss
# C_patch: center (K) for patch dicrimitive loss
# τS, τT: student and teacher temperatures
# β, m_c, m_p: the momentum rates of network, center of

C_cls, and center of C_patch
# xxx0: We extract all the latents from raw image by VAE

encoder to directly model our SD-DiT on the basis
of Latent Diffusion Model.

T ′
θ.params = Sθ.params

for xxx0 in loader: # load a minibatch with N samples

# construct noised student and teacher views
xxxσS = xxx0 +nnnS, nnnS ∼ N (0, σ2

S I), σS ∈ [σmin, σmax]

xxxσT = xxx0 +nnnT, nnnT ∼ N (0, σ2
minI)

# random mask M for student view
vvvσS = xxxσS ⊙ (1 − M) # visible patches
v̄̄v̄vσS = xxxσS ⊙ M # invisible patches
# forward student and tecaher encoder
eeeS = Sθ(vvvσS ) # forward visible student patches
eeeT = Tθ′ (xxxσT ) # forward full teacher patches

######## Generative Loss ########
# insert invisible patches onto visible tokens

according to mask positions
H = torch.gather(torch.cat(eeeS,v̄̄v̄v), M)
# feed complete token set to student decoder
oSoSoS = Gθ(H) # output all tokens for generative loss
LG = MSELoss(oSoSoS, xxx0).mean()

######## Discriminative Loss ########
# forward projection head

j(eee[cls]S ), j(eeepatchS ) = jθ(eeeS) #cls token dim: [N,1,K]

j(eee[cls]T ), j(eeepatchT ) = jθ′(eeeT ) #patch token dim:[N,L,K]
# inter-view discriminative loss on CLS token
Lcls
D = H(j(eee[cls]T ), j(eee[cls]S ), C_cls)

# inter-view discriminative loss on patch tokens

Lpatch
D = H(j(eeepatchT ), j(eeepatchS ), C_patch)

##############################################
Loss = LG + Lcls

D + Lcls
D

Loss.backward() # back-propagate
update(θ) # SGD update for student branch

# teacher and center updates
θ′.params = β*θ

′.params + (1-β)*θ.params
# center updates by teacher patches and cls token
C_cls = m_c*C_cls + (1-m_c)*j(eee

[cls]
T ).mean(dim=0)

C_patch = m_p*C_patch + (1-m_p)*j(eee
patch
T ).mean(dim

=0,1)

def H(T, S, C): # cross-entropy loss
T = T.detach() # stop gradient
S = softmax(S/τS, dim=1)
T = softmax((T - C)/τT, dim=1) # center + sharpen
return - (T * log(S)).sum(dim=1).mean()

Notes: Note that patch-level discriminative loss is solely performed over
the visible patch tokens. Here we do not show them in the pseudocode for
simplicity. Moreover, we do not show the skip-connection preconditioning
in this pseudocode.
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