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The supplementary material contains: 1) more implemen-
tation details about our proposed Diffusion Transformer with
Self-supervised Discrimination (SD-DiT) in Sec.[I} 2) the
pseudocode of SD-DiT in Algorithm [AT} 3) the qualitative
visualization results of SD-DiT-XL/2 in Fig. [AT]

1. Implementation Details

In contrast to DiT [4] and MDT [2] whose settings are de-
rived from the ADM formulation [[L], our SD-DiT employs
the formulation of EDM [3]] in order to construct the dis-
criminative pairs according to the theory of the consistency
function (Eq.(7) in main paper) [6] based on the PF-ODE (Eq.
(4) in main paper) of EDM. Specifically, we adopt the EDM
preconditioning parameterization by using a o-dependent
skip connectiorﬂ

Dy(z;0) = cskip(o') z + cout(0) Fy (Cin(g) ; cnoise(o'))~ (D

This preconditioning parameterization is a common practice
to avoid large variation in gradient magnitudes brought by
various noise levels. As shown in Eq. (E]) the denoiser Dy
is not directly employed as a neural network. Instead, a
different network Fjy is trained to learn Dg. In our SD-
DiT, the student branch is wrapped as Dy in Eq. with
skip connection preconditioning. For simplicity, we did
not introduce this parameterization in the main paper. We
follow the default hyper-parameters of EDM for the skip
connection cip (o), the noise level cyoise () and the input
¢in(0) and output magnitudes ¢,y (o). Besides, the student
noise distribution p, follows the p,, .. in EDM’s setting:

ln(pds) ~ N(Pmeam Psld); 2)

where Ppean = —1.2 and Py = 1.2. Note that we draw the
approximate log-normal probability density distribution (i.e.,
the black dashed line in Fig. 6 in main paper) of the corre-
sponding og according to this Eq. (2). During the sampling
stage, we use the default time steps schedule of EDM:

1 i 1 1\p
Oi<N = (O'max" + m(Umin" *Umax")) ,on =0, 3)

IPlease refer to EDM [3]] for more comprehensive details.

where sampling steps N = 40, p = 7, Omin = 0.002 and
omax = S0. Following EDM, we utilize the second-order
Heun ODE solver for sampling. We follow the paradigm of
LDM [5] to perform diffusion generation in the latent space
of the frozen pre-trained VAE model [5]], which downsam-
ples a 256 x 256 x 3 image into a 32 x 32 x 4 latent variable.
More implementation details can be referred in Tab.
Network parameters. The teacher-student design will
double the parameters of a typical DiT. But at inference,
the teacher network will be removed, and thus no parameter
burden is introduced. In this sense, the model size of learned
SD-DiT-XL/2 is 740.6M, which is comparable to MaskDiT-
XL/2 (730.1M). During training, the additional teacher net-
work is directly updated by EMA without SGD backward
propagation, thereby only requiring extremely lightweight
computational cost compared to standard backward prop-
agation. At inference, the teacher network is completely
removed and no burden is introduced.

Table A1l. Configs for training SD-DiT on 256 x256 ImageNet-1K.

Configs ‘ SD-DiT-S/2  SD-DiT-B/2  SD-DiT-XL/2
total batch size 256

learning rate le-4

training iterations 400k 400k 2400k
optimizer AdamW with 31, 82=0.9,0.999
EMA momentum from 0.996 to 0.999

student temperature 0.1

teacher temperature from 0.09 to 0.099 (warmup 5 epochs)

2. Additional Experimental Results

How about training with a larger batch size? MaskDiT-
XL/2 attains the best FID score with fewer training steps,
attributed to a large batch size of 1024. For a more com-
prehensive comparison, we experiment by training SD-DiT-
XL/2 with 1024 batch size, and the FID is 16.78 (150k
steps), which is better than MaskDiT-XL/2 (FID: 17.22 at
150k steps) [[7].

Comparison at higher iterations. We experiment by train-
ing SD-DiT-XL/2 with higher iterations (3500k), and the



Figure A1. Qualitative results of our SD-DiT-XL/2. Label of each
row (from top to bottom): Daisy, Giant panda, Lakeside, Eskimo

dog, Minibus, Tiger shark, Suspension bridge.

FID is 6.74, which is comparable to MDT-XL/2 (FID: 6.65,
3500k) [2]. It is worth noting that, compared to , our SD-
DiT-XL/2 only uses 45GB memory per GPU with faster
training speed (much lower than the memory requirement
of MDT-XL/2 [[7])), leading to a better computational cost-

performance trade-off.

Classifier-free guidance (CFG) results. We also experi-
ment by upgrading our SD-DiT with CFG, and the FID of
SD-DiT-XL/2 (+CFG) is 3.23, which is better than MaskDiT-
XL/2 (without the unmask tuning stage) with CFG (FID:

4.54) 7.
3. Pytorch-like Pseudocode for SD-DiT
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Algorithm A1 Pytorch-like Pseudocode of SD-DiT

ff 89,7-8 student & te
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“her DiT encodezr

o direc y DiT on the bas
Diffusion Model.

.params = Sy.params

for o in loader: # load a minibatch with N samples

construct 101 secC student T¢ cner views
Zos =0 +1ns, ns ~ N(0, JSI), 05 € [Onin, Onax]
Tqp =@o +m1, M1 ~ N(0, Umml)
# random mask M for student view
Vog —a:as@(l—M) i»~i,¢f~ patches
vas _mds @M # sible patches

59(1}05) # ;f;‘,jr
= To(®e,) + cox

H= torch gather(torch cat(es,v), M)

# feed complete token se o student decoder

05 = 99(7-[) # output all tokens for generative loss
L; = MSELoss (05, Xg) .mean ()

4}4

)

rwarc ; ior

JEl), J(EER) = jo(es) fols token dims (v, 1,k

j(e Cls]) ](epatCh) = jgs (er) #patch token dim:[N,L,K
inter 1 l1scrim a € OS¢ DT C > oken

,CClS* H(]( [cls]) (e[“S]), C_cls)

# iter-viewn iscrir at e loss on p okens

Lpatch, H(J(epatch) (epatch), C_patch)

s S L
Loss = Lg + L5 + Egls

Loss.backward () #
update () # SGD up

ﬂ*@ params + (1-B8) 6. params
lates / v",\}}f e s toke

I
C_cls = m_c*C_cls + (1-m_c)+j(e [Clsl) mean (dim=0)
=m

C_patch _p*C_patch + (1-m_p) »5(€B**").mean (dim
=0,1)

H(T, S, C): # cross—entrop

T = T.detach() # stop grad

S = softmax (S/7s, dim=1)

T = softmax ((T - C)/7r, dim=1) # center + sharpen

return - (T * log(S)).sum(dim=1) .mean ()

Notes: Note that patch-level discriminative loss is solely performed over
the visible patch tokens. Here we do not show them in the pseudocode for
simplicity. Moreover, we do not show the skip-connection preconditioning
in this pseudocode.
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