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1. Overview

In the supplementary material, the chapters are briefly de-
scribed as follows:
• we present a detailed experimental setup including base-

line introduction, implementation details, and evaluation
metrics in Sec. 2.

• Additional experimental results are given in Sec. 3 to
demonstrate the excellent performance of our method.

• We show visualization results in Sec. 4 on different
scenes.

• We give a video demo of real-time mapping and tracking
in Sec. 5.

2. Experimental Setup

2.1. Baselines

To the best of our knowledge, NIDS-SLAM [3] is the only
existing semantic NeRF-SLAM method. Therefore, we use
it as the baseline for comparing the accuracy of semantic
NeRF-based SLAM. However, NIDS-SLAM [3] does not
evaluate mesh reconstruction accuracy, so we only com-
pare the metrics of the semantic segmentation accuracy with
this method. To provide a more comprehensive baseline
for comparison, we also consider Semantic-NeRF [13], an
offline-trained approach that focuses on high-fidelity se-
mantic 3D reconstruction through hours of extensive op-
timization. For SLAM accuracy, we compare our method
with state-of-the-art NeRF-based SLAM methods [4, 7, 10–
12, 14]. Since iMAP [10] is not open source, we use
iMAP* [10] in our experiment, which is the reimplemen-
tation of iMAP.

*Equal Contribution.
†Corresponding Author.

2.2. Implementation Details

Hyperparameters. For geometry representation, we
adopt the coarse feature planes with a resolution of 24
cm and the fine feature planes with a resolution of 6 cm.
For semantic and appearance representation, we employ the
coarse feature planes with a resolution of 24 cm and the fine
feature planes with a resolution of 3 cm. We use 16-channel
feature vectors to represent semantic, geometry, and appear-
ance features for both coarse and fine feature planes, result-
ing in 32-channel concatenated features input for the de-
coder.

For rendering, we first sample Nstrat points for each ray
by stratified sampling. We then additionally sample Nimp

points near surfaces. For pixels with ground truth depths,
the Nimp additional points are uniformly sampled within
the truncation distance with respect to the depth measure-
ment. For Replica dataset [8], we set Nstrat = 32 and
Nimp = 8. We conduct 15 optimization iterations for the
mapping process and 8 optimization iterations for the track-
ing process. We sample 4000 pixels for mapping optimiza-
tion and 2000 pixels for tracking optimization in each iter-
ation. Since ScanNet dataset [2] scenes are at a larger scale
and more complicated, we set Nstrat = 48 and Nimp = 8.
We perform 40 optimization iterations for both the mapping
and tracking process.

We use a window of 5 keyframes for jointly optimiz-
ing scene representation, the MLP network, and the camera
poses of the selected keyframes. The weighting coefficients
of each loss are λfs = 5, λs = 0.1, λf = 5, λd = 0.1,
λc = 5. We use a learning rate of 0.005 for feature planes,
0.001 for the decoder, 0.003 for Eθ, Hθ, and Fθ. For cam-
era pose optimization, we use a learning rate of 0.001 in
Replica dataset [8]. In ScanNet [2] and TUM RGBD [9]
dataset, we use a learning rate of 0.0005 for camera transla-
tion optimization and 0.0025 for camera rotation optimiza-
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tion.
Network details. For the decoder design Dθ, the input
geometry features are processed through a two-layer MLP
with 16 channels in the hidden layer. This MLP outputs 17-
channel vectors, where values of the first channel are used
as the output for SDF values. The remaining 16 channels
are concatenated with the input semantic features and input
appearance features. The concatenated feature vectors are
then passed through another two-layer MLP with a hidden
size of 16, which outputs the RGB values. We use ReLU
activation function for this hidden layer. Tanh and Sigmoid
are respectively used for the output layers of SDF and color
values. The input semantic features are processed through
a three-layer MLP with 256 channels in the hidden layer to
output semantic values.

For cross-attention based feature fusion, the geometry
MLP Eθ is a three-layer MLP while the appearance MLP
Hθ and the fusion MLP Fθ are both two-layer MLPs. The
hidden layers of these MLPs have 16 channels. We use
ReLU activation function for the hidden layer of Hθ.

2.3. Evaluation Metrics

For mesh reconstruction evaluation, we use Depth L1 (cm),
Accuracy (cm), Completion (cm), and Completion ratio (%)
with a threshold of 5 cm. We remove unobserved areas out-
side of any camera radius, as well as additional mesh culling
to remove noise points following Co-SLAM [11].

Depth L1 (cm): the average absolute error between
ground truth depth and reconstructed depth. The depth val-
ues are generated by randomly sampling 1000 views from
both the reconstructed meshes and the ground truth meshes.

Accuracy (cm): the average distance from sampled
points on the reconstructed mesh to their nearest ground
truth points.

Completion (cm): the average distance from sampled
points on the ground truth mesh to their nearest points on
the reconstructed mesh.

Completion ratio (%): the percentage of points in the
reconstructed mesh with Completion under 5 cm.

For localization accuracy evaluation, we use ATE [9]. in-
cluding RMSE (cm) and Mean (cm) metrics. Semantic seg-
mentation is evaluated with respect to mIoU (%) and per-
pixel accuracy (%) [6].

3. Additional Experiments
3.1. More Ablation Studies

The number of feature channels. We conduct an abla-
tion study on the effect of using different numbers of fea-
ture channels. Fig. 1 demonstrates that as the number of
feature channels increases, the semantic rendering results
progressively approach the ground truth labels. This can be
attributed to the enhanced ability of high-dimensional fea-
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Figure 1. Quantitative analysis on the number of feature channels.
With the increase in the number of feature channels, the semantic
rendering results achieve higher accuracy.

Channels Reconstruction Localization Semantic #param. ↓ Runtime
Acc. (cm) ↓ RMSE (cm) ↓ mIoU (%) ↑ Map. (ms) ↓ Track. (ms) ↓

Ours-8 2.21 0.65 82.35 3.19 23.6 × 15 7.2 × 8
Ours-16 2.09 0.50 84.50 6.23 26.9 × 15 7.8 × 8
Ours-32 2.32 1.64 84.65 12.37 34.6 × 15 8.6 × 8

Table 1. Results of using different feature channel numbers. Map-
ping and tracking runtime is reported in ms/iter × iter format.
With the increase of channel numbers, the numbers of parameter,
mapping and tracking time also increase, as the network requires
more time to optimize higher-dimensional features.

tures to capture and represent more descriptive and diverse
information of the environment. However, the increase in
the number of feature channels leads to higher parameter
numbers and longer computation time, as shown in Tab. 1.
Moreover, using 32-channel features for scene representa-
tion with only 15 iterations in mapping and 8 iterations in
tracking leads to degraded mapping and tracking perfor-
mance, as the 32-channel feature planes cannot be suffi-
ciently optimized. Based on the above results, it can be
concluded that using 16-channel features in scene represen-
tation is a trade-off between the accuracy and runtime.
Effect of noisy semantic results for supervision. Fig. 2
illustrates the robustness of our method when employing
noisy semantic supervision signals with various noise ra-
tios. Our approach achieves relatively accurate semantic
rendering results even when using noisy semantic supervi-
sion with noise ratios up to 90% in both Replica [8] and
ScanNet [2] datasets. This robustness is attributable to our
feature collaboration strategy, which effectively fuses geo-
metric and appearance information. Specifically, geometric
features offer information about the shapes and spatial re-
lationships of objects. Such information can mitigate the
effects of inconsistencies caused by noisy semantic labels,
primarily because geometric attributes typically maintain
their stability despite the presence of semantically noisy la-
bels. Moreover, appearance features provide detailed sur-
face characteristics of objects, such as texture and color,
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Figure 2. Semantic rendering results with noisy semantic labels for supervision on both Replica [8] and ScanNet [2] datasets.

Name Reconstruction [cm] Localization [cm]
Acc. ↓ Comp. ↓ Comp.Ratio(%) ↑ RMSE ↓ Mean ↓

w/o semantics 1.83 1.78 96.07 0.58 0.52
w/ semantics 1.66 1.56 96.74 0.55 0.48

Table 2. Ablation study of adding semantic information. Semantic
information can enhance the expression of geometry and appear-
ance, achieving higher accuracy in mapping and tracking.

which are crucial for differentiating similar objects with dis-
tinct identities even when their semantic labels may be in-
correct. Through the effective collaboration of different fea-
tures, a more reliable and comprehensive understanding of
the scene is achieved. Therefore, we are capable of reduc-
ing the negative effects of high-noise labels in the semantic
supervision.
Effect of whether to use semantic information. Tab. 2
demonstrates that semantic information can enhance the ex-
pression of geometric and appearance information, lead-
ing to higher accuracy in mesh reconstruction and localiza-
tion. Specifically, semantic information provides a richer
and more detailed context for the interpretation of geomet-
ric and appearance information. For example, knowing the
semantic segmentation results of a set of geometric data cor-
responding to a chair can guide the model to reconstruct and
locate the object more accurately and realistically. There-
fore, it can be concluded that the integration of semantic
information offers a more comprehensive understanding of
the environment.
Effect of whether to add Bundle Adjustment (BA). As

Name Acc.[cm]↓ Comp.[cm]↓ Comp.Ratio(%)↑ RMSE[cm]↓ mIoU(%)↑
w/o BA 2.520 1.873 95.201 0.320 85.91
w/ BA 2.517 1.876 95.350 0.312 85.95

Table 3. Experiment of whether to use BA on Replica [8].

shown in Tab. 3, we incorporate BA into our SNI-SLAM
following BARF [5] and L2G-NeRF [1]. Such integration
only shows a slight improvement in SLAM accuracy be-
cause current BA NeRFs lack adequate constraints for se-
mantic SLAM optimization.
Ablation of our innovations across different scenes. We
conduct ablation experiments across 8 scenes in Tab. 4-
7, noticing that each innovation is added from baseline.
All innovations achieve large increased accuracy (average
13% improvement). Specifically, cross-attention based fea-
ture fusion and feature loss increase semantic accuracy by
23.2%, attributed to mutual reinforcement between differ-
ent modality features of scene and higher-level supervision
for semantic optimization. Moreover, one-way correlation
decoder can achieve up to 33% improvement in metrics.

3.2. Semantic Segmentation Results

Tab. 8 shows per-scene semantic segmentation results of
both online and offline 3D semantic reconstruction meth-
ods. For online methods, NIDS-SLAM [3] and our SNI-
SLAM, take RGB-D frames as input and perform real-time
mapping and camera pose estimation, which require several
minutes for semantic scene reconstruction. For the offline



method, Semantic-NeRF [13], takes camera pose and RGB-
D frames as input and requires nearly 10 hours of train-
ing to obtain semantic reconstruction results, which is sev-
eral tens of times the duration required by the online meth-
ods. Our method outperforms the online method NIDS-
SLAM [3] of all scenes and all metrics. Compared with the
offline method Semantic-NeRF [13], our real-time semantic
mapping method achieves similar results in pixel accuracy
metric.

3.3. Reconstruction and Localization Results

Tab. 9 demonstrates per-scene quantitative evaluation of
our method with existing NeRF-based SLAM method in
Replica dataset [8]. Our method achieves the best per-
formance in Depth L1, Completion, Completion ratio (%),
ATE RMSE, and ATE Mean metrics across all scenes. In
some scenes, our method can improve localization accuracy
by up to 52% and reconstruction accuracy by up to 32%,
demonstrating excellent performance across scenes. This
remarkable improvement is attributed to the thoughtful de-
sign of the semantic NeRF-based SLAM framework.

4. Visualization
We demonstrate top-view semantic mapping results in
Fig. 3, showing that our method is capable of achieving
accurate segmentation results, even for objects with com-
plex shapes, such as flowers, and small objects on the table.
This capability is due to the hierarchical semantic represen-
tation, which provides a coarse-to-fine level of understand-
ing. This approach initially identifies the overall semantic
information of the scene, then gradually refines this under-
standing to capture intricate details, even for small or com-
plex objects. Such representation allows for a more compre-
hensive perception of the environment, facilitating accurate
segmentation results.

Semantic rendering results are shown in Fig. 4. From
the residual, we can observe that our method achieves ex-
cellent semantic segmentation accuracy in both Replica [8]
and ScanNet [2] datasets. Fig. 5 shows pixel accuracy and
mIoU changing curve of semantic rendering result from the
first frame to the last frame in real-time semantic mapping
and tracking. This graph illustrates the fast convergence
speed of SNI-SLAM as well as the high semantic accuracy
of real-time mapping, which is attributed to loss construc-
tion at the feature level. Such high-level guidance for scene
optimization is able to accelerate convergence speed as well
as achieving accurate semantic mapping.

Fig. 6 and Fig. 7 demonstrate detailed zoom-in views
of Replica dataset [8] and Fig. 8 shows results on Scan-
Net dataset [2]. While other methods fail to reconstruct de-
tails such as chair legs and chair back, our method is ca-
pable of complete scene reconstruction. This is attributed
to the integration of different modality information, as it

enables the complementarity of multi-modal information.
Moreover, as shown in Fig. 8, our method can achieve a
smoother mesh reconstruction due to fully utilizing the ad-
vantages of each modality. The above results indicate that
our method is capable of retaining more details and achiev-
ing a more complete reconstruction compared to existing
NeRF-based SLAM methods. Furthermore, our method
can provide smoother, more coherent transitions for high-
quality reconstruction.

5. Video Demo
We present a video demo, demo.mp4, on room0 of the
Replica dataset [8]. In this video, we demonstrate the en-
tire real-time mapping process, including semantic mapping
and RGB mapping, as well as the tracking process, showing
excellent performance of our method. From the video, we
can view accurate semantic segmentation and RGB map-
ping results of the scene from top view. In addition, it can
be observed that the ground truth trajectory and the esti-
mated trajectory almost completely overlap, demonstrating
high localization accuracy. We strongly recommend readers
to view our video.
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Name office1 office2
Acc.[cm]↓ RMSE[cm]↓ mIoU(%)↑ Acc.[cm]↓ RMSE[cm]↓ mIoU(%)↑

(a) Ours (w/o all innovations in ablation studies, baseline model) 1.84 0.89 58.65 2.99 0.49 64.36
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(d) Ours (+ decoder design to (a)) 1.64 0.73 62.92 2.88 0.46 68.45
(e) Ours (+ hierarchical semantic representation to (a)) 1.80 0.65 68.14 2.79 0.45 75.18

(f) Ours (full, with all innovations in ablation studies, best model) 1.58 0.41 78.13 2.52 0.32 85.91

Table 6. Ablation study of our innovations on office1 and office2 of Replica [8].

Name office3 office4
Acc.[cm]↓ RMSE[cm]↓ mIoU(%)↑ Acc.[cm]↓ RMSE[cm]↓ mIoU(%)↑

(a) Ours (w/o all innovations in ablation studies, baseline model) 2.78 0.72 52.42 2.19 0.65 61.92

(b) Ours (+ feature loss to (a)) 2.57 0.66 58.71 2.13 0.59 66.68
(c) Ours (+ feature fusion with feature loss to (a)) 2.55 0.63 61.39 2.09 0.57 68.51
(d) Ours (+ decoder design to (a)) 2.53 0.63 58.88 2.14 0.63 69.25
(e) Ours (+ hierarchical semantic representation to (a)) 2.59 0.67 64.02 2.17 0.62 74.96

(f) Ours (full, with all innovations in ablation studies, best model) 2.51 0.62 73.41 2.07 0.47 79.32

Table 7. Ablation study of our innovations on office3 and office4 of Replica [8].

Methods room0 room1 room2 office0 office1 office2 office3 office4
Acc. mIoU Acc. mIoU Acc. mIoU Acc. mIoU Acc. mIoU Acc. mIoU Acc. mIoU Acc. mIoU

Offline Semantic-NeRF [13] 98.34 97.00 98.71 97.28 97.59 95.92 98.67 97.44 97.07 93.48 97.62 92.42 96.74 94.31 96.62 94.22

Online NIDS-SLAM [3] 97.76 82.45 98.50 84.08 98.76 76.99 98.89 85.94 – – – – – – – –
SNI-SLAM (Ours) 98.53 88.42 98.61 87.43 98.80 86.16 99.17 87.63 99.18 78.63 99.13 86.49 98.66 74.01 99.06 80.22

Table 8. Quantitative comparison of SNI-SLAM with existing semantic NeRF-based SLAM method NIDS-SLAM [3] and offline 3D
semantic reconstruction method Semantic-NeRF [13]. For a fair comparison, the results are obtained using ground truth semantic labels
for supervision. Online methods only take RGB-D frames as input, while offline method requires RGB-D frames and corresponding
camera poses. Online methods perform scene reconstruction in several minutes while offline method require hours of training. Our method
surpasses the performance of NIDS-SLAM [3] and achieves comparable results with Semantic-NeRF [13] in pixel accuracy metric.



Methods
Reconstruction [cm] Localization [cm]

Depth L1 ↓ Acc. ↓ Comp. ↓ Comp.Ratio(%) ↑ RMSE ↓ Mean ↓

office0

iMAP* [10] 3.79 3.34 3.62 83.59 3.31 2.74
NICE-SLAM [14] 1.43 1.83 1.84 94.93 1.50 1.32
Vox-Fusion [12] 3.44 1.63 1.87 93.86 1.35 0.98
Co-SLAM [11] 1.24 1.57 1.56 96.09 0.69 0.63

ESLAM [4] 0.71 1.61 1.45 98.45 0.61 0.45
SNI-SLAM (Ours) 0.55 1.46 1.30 98.70 0.33 0.28

office1

iMAP* [10] 3.76 2.10 3.62 88.45 1.42 1.15
NICE-SLAM [14] 1.58 1.76 1.82 94.11 1.01 0.91
Vox-Fusion [12] 1.77 1.60 1.66 94.40 1.76 1.29
Co-SLAM [11] 1.48 1.31 1.59 94.65 0.56 0.52

ESLAM [4] 1.02 1.82 1.30 97.60 0.59 0.51
SNI-SLAM (Ours) 0.97 1.58 1.26 97.70 0.41 0.35

office2

iMAP* [10] 3.97 4.06 4.73 79.73 7.17 4.81
NICE-SLAM [14] 2.70 3.18 3.11 88.27 1.85 1.51
Vox-Fusion [12] 3.52 2.02 3.03 88.94 1.18 0.73
Co-SLAM [11] 1.86 2.84 2.43 91.63 2.12 1.98

ESLAM [4] 0.93 2.95 1.92 95.07 0.67 0.50
SNI-SLAM (Ours) 0.89 2.52 1.87 95.20 0.32 0.28

office3

iMAP* [10] 5.61 4.20 5.49 73.90 6.32 4.89
NICE-SLAM [14] 2.10 3.01 3.16 87.68 5.67 2.53
Vox-Fusion [12] 1.82 2.33 2.81 89.10 1.11 0.69
Co-SLAM [11] 1.66 3.06 2.72 90.72 1.62 1.47

ESLAM [4] 1.03 2.55 2.20 95.05 0.74 0.64
SNI-SLAM (Ours) 0.75 2.51 2.07 95.40 0.62 0.56

office4

iMAP* [10] 5.71 4.34 6.65 74.77 2.55 2.10
NICE-SLAM [14] 2.06 2.54 3.61 87.23 3.53 2.52
Vox-Fusion [12] 4.84 2.02 3.51 86.53 1.64 1.18
Co-SLAM [11] 1.54 2.23 2.52 90.44 0.87 0.68

ESLAM [4] 1.18 2.10 2.13 94.31 0.66 0.54
SNI-SLAM (Ours) 0.97 2.07 2.10 94.40 0.47 0.40

room0

iMAP* [10] 5.08 4.01 5.84 78.34 6.33 3.85
NICE-SLAM [14] 1.79 2.44 2.60 91.81 1.86 1.49
Vox-Fusion [12] 1.76 1.77 2.69 92.03 1.37 1.03
Co-SLAM [11] 1.05 2.11 2.02 95.26 0.72 0.57

ESLAM [4] 0.73 2.15 1.79 97.39 0.84 0.67
SNI-SLAM (Ours) 0.55 2.09 1.73 97.80 0.50 0.43

room1

iMAP* [10] 3.44 3.04 4.40 85.85 3.46 2.91
NICE-SLAM [14] 1.33 2.10 2.19 93.56 2.37 1.92
Vox-Fusion [12] 2.52 1.51 2.31 92.47 1.90 1.35
Co-SLAM [11] 0.85 1.68 1.81 95.19 0.85 0.73

ESLAM [4] 0.74 1.94 1.58 96.50 0.72 0.58
SNI-SLAM (Ours) 0.58 1.66 1.56 96.74 0.55 0.48

room2

iMAP* [10] 5.78 3.84 5.07 79.40 2.65 2.50
NICE-SLAM [14] 2.20 2.17 2.73 91.48 2.26 1.65
Vox-Fusion [12] 3.58 2.23 2.58 90.13 1.47 1.02
Co-SLAM [11] 2.37 1.99 1.96 93.58 1.02 0.87

ESLAM [4] 1.26 1.68 1.65 96.99 0.53 0.44
SNI-SLAM (Ours) 0.87 1.64 1.62 97.05 0.45 0.38

Table 9. Per-scene mesh reconstruction and localization accuracy results in Replica dataset [8]. Best results are highlighted as first ,
second best results are highlighted as second . Our method achieves state-of-the-art performance in all scenes.



Figure 3. Top-view semantic reconstruction results of SNI-SLAM on the Replica dataset [8]. Our method is capable of achieving relatively
accurate results through optimization during the real-time mapping process. As shown in red colored box of room0, small objects on the
table are segmented accurately. Red colored box of office0 displays that flowers with complex shapes can be precisely segmented.



Figure 4. Semantic rendering results of SNI-SLAM on Replica [8] and ScanNet [2] datasets. Residual visualizes the difference between
rendering results and the ground truth labels. It can be observed that our method can achieve excellent semantic segmentation accuracy.
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Figure 5. Qualitative results of SNI-SLAM in real-time semantic mapping from the first frame to the last frame. The y-axis represents pixel
accuracy and mIOU of rendering labels, the x-axis represents frame index of simultaneously mapping and tracking. The graph displays
that our method can already achieve high accuracy at the beginning of the mapping.
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Figure 6. Qualitative comparison of our method with existing NeRF-based SLAM methods on Replica [8] of office3 using different
shading mode. As shown in red colored box, other methods cannot accurately model chair legs while our method can. Moreover, our
method achieves more accurate surface reconstruction results than baseline.
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Figure 7. Qualitative comparison of our method with existing NeRF-based SLAM methods on Replica [8] of office4 using different shading
mode. As shown in red colored box, our method achieves complete reconstruction compared with other methods.
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Figure 8. Qualitative comparison of our method with existing NeRF-based SLAM methods on ScanNet [2] of scene0207 using different
shading mode. As shown in red colored box, our method achieves more accurate reconstruction compared with other methods.
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