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Supplementary Material

1. Synthetic Data Details
We generate synthetic spike data in NeRF using six scenes
(chair, ficus, hotdog, lego, materials, and mic). To synthe-
size the spike stream, we initially resize the original images
from Blender to 400 × 400. Employing the spike generator
provided by [1], we simulate spike streams for each view-
point.

For varying illumination conditions, we manipulate the
intensity parameter in the simulator within the range of 16
to 64 (refer to Fig. 6 of the main manuscript and Table S1).
Beyond generating spike streams from static viewpoint im-
ages, we also render 16 high-resolution images captured
by the camera. These images are then input into the spike
generator to replicate the dynamic recording process of the
spike camera. The resulting spike streams for each view are
of size 400 × 400 × 256.

Each scene encompasses 100 sets of images and their
corresponding event data. The input images from Blender
and the generated spike streams are visually depicted in
Fig. S1.

2. Real-world Data Details
The spike camera is capable of capturing spike streams with
a spatial resolution of 250 × 400 and a temporal resolution
of 20,000 Hz.

For each viewpoint, we simultaneously capture ideal and
non-ideal conditions of spike data. Initially, we minimize
noise by providing the spike camera with ideal light inten-
sity and motion. Utilizing the Spk2img method, we recon-
struct high-quality images and employ COLMAP for pose
estimation. This process enables us to obtain the pose and
camera parameters for spike data under typical conditions.
Conducting handheld captures, we gather data from five
real-world scenarios, each showcasing texture details un-
der distinct illumination conditions. Each dataset consists
of approximately 35 images from diverse viewpoints, ac-
companied by their corresponding spike data. The recorded
spike streams are visually depicted in Fig. S2. The spike
numbers of both synthetic spike data and real-world spike
data are shown in Table S1.

3. More Details of Threshold Variation Simu-
lation

The threshold variation of each spiking neuron can be mod-
eled by Eq. S1, and the spike stream can be generated by

Ŝ(x, y) = SN(I(Ti(r))) ·R(x, y), (S1)
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Figure S1. The input images and the visualization of the generated
spike stream in synthetic scenes.

where SN(·) denotes the spiking neuron, R(x, y) is the
nonuniformity matrix and can be obtained by capturing a
uniform light scene and recording the intensity.

Choosing the pixel (xm, ym) which is closest to the
average response value as the reference pixel, R(x, y) is
then obtained by calculating the ratio of the reference
pixel’s response value to the response values of other pixels:
R(x, y) = (L2+Ld(xm,ym))T2(xm,ym)

(L2+Ld(x,y))T2
, where L2 and T2 are

variables to be calibrated. As referred to [1], fixed pattern
noise includes dark current noise and response nonunifor-
mity noise, the equivalent light intensity value for the dark
signal, Ld can be calculated by capturing two uniformly il-
luminated scenes:{

C∆V = αLdTd

C∆V = α(L1 + Ld)T1

, (S2)

where the first line of the equation represents capturing the
scene brightness at zero (obtained by covering the lens in a
dark room), while the second line represents capturing the
scene brightness at L1 (recorded using a photometer for L1

value). Td and T1 respectively represent the spike emission
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Figure S2. The scenes and the visualization of the recorded spike stream in real-world settings.

Table S1. The mean spike count for each view across synthetic and real-world datasets.

Synthetic spike data

# SpikeNum/Scene Lego Chair Hotdog Ficus Materials Mic
Train 268,185 262,640 282,359 190,502 196,675 169,442
Test 264,969 264,822 255,235 197,473 210,756 167,507
Val 270,027 257,689 274,341 192,482 198,026 169,398

Real-world spike data

# SpikeNum/Scene Toy Grid Box Toy 2 Bottle -
- 585,016 422,037 441,255 725,272 691,757 -

intervals of the corresponding spike streams.
By solving Eq. S2, the additional brightness of the scene

due to the equivalent dark current can be calculated:

Ld =
L1 T1

Td − T1
. (S3)

Another spike streams with brightness L2 needs to be
captured to nullify the unknown photoelectric conversion
constant α:

C∆V = α(L2 + Ld)T2. (S4)

Due to mismatches in capacitance and voltage between
pixel circuits, different pixels exhibit varying responses to
scene brightness, leading to fixed pattern noise. The corre-
sponding error matrix can be defined as follows:

R(x, y) =
(C + δC(x, y)) (∆V + δV (x, y))

C∆V
. (S5)

Substituting Eq. S3 and Eq. S4 into the above equation
yields a specific value for R(x, y):

R(x, y) =
(L2 + Ld(xm, ym))T2(xm, ym)

(L2 + Ld(x, y))T2
. (S6)

According to Eq. S6, the threshold variation of spiking
neurons can be simulated based on the real-world spike dis-
tribution.

4. Additional Quantitative Results
The detailed quantitative results on six synthetic scenarios
are shown in Table S2 and Table S3. Table S2 illustrates
the superior performance of SpikeNeRF across all synthetic
scenarios. This observation suggests that our method excels
in learning a more precise 3D representation of the scene
within the proposed framework.

In Table S3, we present the outcomes for the synthetic
spike dataset under various light intensities. These diverse
light conditions are achieved by adjusting the intensity pa-
rameter in the spike simulator, with settings for low (16),
medium (32), and strong (64) illumination. The spike num-
bers, representing the count of generated spike data for a
view, are detailed in the table. A higher spike number indi-
cates a stronger light intensity. The results consistently re-
veal the superior performance of our final model compared
to other configurations.

5. Additional Qualitative Results
The qualitative results on synthetic scenarios and real-world
spike data are shown in Fig. S3, Fig. S4, and Fig. S5.

In Fig. S3 and Fig. S4, our SpikeNeRF effectively lever-
ages the inherent relationship between spike streams and
scenes to learn a sharp NeRF. Consequently, our results re-
main resilient to the noise inherent in spike data, yielding



Table S2. Detailed quantitative result on six synthetic scenes. We use bold to mark the best results. The results on the left pertain to
measurements across the entire image, while those on the right specifically focus on measurements within the object region.

Lego Chair Hotdog
Novel View PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

TFP(32)+NeRF 15.27/15.57 0.154/0.785 0.588/0.065 14.94/15.21 0.126/0.844 0.662/0.057 16.18/16.56 0.191/0.853 0.641/0.059
TFP(256)+NeRF 14.44/16.41 0.127/0.794 0.652/0.088 13.92/15.47 0.089/0.836 0.735/0.079 15.15/17.34 0.175/0.870 0.685/0.059
TFI+NeRF 13.77/16.63 0.120/0.793 0.670/0.093 13.20/15.83 0.085/0.835 0.753/0.090 14.48/17.56 0.172/0.871 0.700/0.063
Spk2img+NeRF 13.42/14.05 0.066/0.726 0.724/0.129 12.76/13.23 0.055/0.794 0.778/0.102 14.20/14.92 0.123/0.810 0.728/0.087

Ours 18.72/19.38 0.251/0.880 0.517/0.050 19.11/19.76 0.201/0.917 0.591/0.045 19.76/20.25 0.274/0.930 0.581/0.030

Ficus Materials Mic
Novel View PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

TFP(32)+NeRF 18.44/19.17 0.096/0.876 0.758/0.050 / / / / / /
TFP(256)+NeRF 16.55/20.45 0.067/0.894 0.814/0.049 11.52/20.63 0.026/0.855 0.823/0.130 17.85/25.14 0.080/0.937 0.817/0.098
TFI+NeRF 15.72/20.29 0.061/0.891 0.829/0.052 15.92/20.70 0.138/0.849 0.726/0.139 16.48/25.02 0.070/0.934 0.837/0.103
Spk2img+NeRF 16.33/17.60 0.037/0.848 0.872/0.070 16.62/17.78 0.092/0.795 0.782/0.166 18.94/21.86 0.049/0.901 0.889/0.121

Ours 20.89/22.18 0.132/0.910 0.725/0.044 21.97/23.14 0.244/0.903 0.595/0.077 24.21/27.43 0.149/0.953 0.693/0.053

impressive results in novel view synthesis.
Fig. S5 showcases the results obtained from five real-

world spike sequences. When confronted with spike data
noise, other methods exhibit limitations, introducing more
noise into their output. In contrast, our SpikeNeRF excels
in predicting accurate details and light intensities compared
to alternative methods.

6. Additional Ablation Results

Comparison to finetuned/retrained Spk2imgNet. We
conduct separate retraining and fine-tuning of Spk2imgNet
on the dataset provided by RSIR, and the results are
presented in Table S4. We show the results focused
solely on measurements within the object region. Since
the Spk2imgNet network is primarily designed for high-
intensity lighting conditions, and the lighting situations in
the simulated and real-world scenarios addressed in this pa-
per are more complex, training Spk2imgNet with a noisy
dataset makes it more challenging for the network to learn
the correspondence between spikes and light intensity, re-
sulting in no improvement in performance. RSIR processes
spike data using a cyclic iterative approach, where, in the
original study, spikes of length 32 or 64 are inputted in each
iteration, and the loop performs optimally after 4-8 itera-
tions. Therefore, we design three configurations for com-
parison, as shown in the table, where ‘w’ represents the
length of each input spike, and ‘c’ represents the number
of iterations. According to SSIM and LPIPS metrics, it can
be observed that among these configurations, RSIR(w=32,
c=8) performs best.
Ablation of the nonuniformity matrix. We conduct an

ablation experiment of nonuniformity matrix R in Table S5.
In Table 2 of our paper, we also compare our proposed loss
Ls with Li, Ls+Li, and L∗

i .
Different sequence lengths. In Table S6, we conduct ex-
periments using sequences of different lengths. We ob-
served that PSNR might be more significantly influenced by
the contrast, with the highest results achieved using w=64
under light intensity 16. SSIM and LPIPS metrics focus
more on measuring structural and perceptual information,
respectively. As the length of the spike sequence increases,
the SSIM and LPIPS metrics improve under different light
intensities. SpikeNeRF can converge under low illumina-
tion and with a short sequence length.

7. Supplementary Video
We provide a supplementary video to show the video
results. For synthetic scenes, we show the results of
TFI+NeRF, TFP+NeRF, Spk2img+NeRF and our SpikeN-
eRF. For the real scenes, we show the comparison of the re-
sults of all mentioned methods in the toy and toy 2 scenes.
It is obvious that the results of our SpikeNeRF have less
noise, better contrast, and sharper object texture details
compared to other methods on both synthetic scenes and
real scenes.
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Table S3. Quantitative evaluation of different light intensities on synthetic dataset.

Method Loss
Light intensity (16)

PSNR ↑ SSIM ↑ LPIPS #SpikeNum
TFP(32)+NeRF MSE 15.27/15.57 0.154/0.785 0.588/0.065

268,185

TFP(256)+NeRF MSE 14.44/16.41 0.127/0.794 0.652/0.088
TFI+NeRF MSE 13.77/16.63 0.120/0.793 0.670/0.093

Spk2img+NeRF MSE 13.42/14.05 0.066/0.726 0.724/0.129

Ours

Li
∗ 13.77/16.63 0.120/0.793 0.670/0.093

Li 18.55/19.76 0.237/0.878 0.527/0.051
Ls+Li 18.50/19.59 0.237/0.876 0.524/0.051
Ls 18.72/19.38 0.251/0.880 0.517/0.050

Method Loss
Light intensity (32)

PSNR ↑ SSIM ↑ LPIPS #SpikeNum
TFP(32)+NeRF MSE 17.81/18.55 0.191/0.827 0.562/0.077

414,475

TFP(256)+NeRF MSE 15.82/18.68 0.170/0.835 0.616/0.077
TFI+NeRF MSE 15.07/18.53 0.156/0.825 0.634/0.083

Spk2img+NeRF MSE 14.59/15.39 0.109/0.768 0.651/0.093

Ours

Li
∗ 15.07/18.53 0.156/0.825 0.634/0.083

Li 21.21/22.81 0.272/0.890 0.492/0.055
Ls+Li 21.76/23.59 0.279/0.913 0.486/0.053
Ls 22.05/23.66 0.300/0.926 0.477/0.050

Method Loss
Light intensity (64)

PSNR ↑ SSIM ↑ LPIPS #SpikeNum
TFP(32)+NeRF MSE 20.63/21.86 0.239/0.872 0.528/0.067

720,032

TFP(256)+NeRF MSE 17.28/21.27 0.189/0.852 0.596/0.081
TFI+NeRF MSE 16.16/20.56 0.187/0.852 0.602/0.077

Spk2img+NeRF MSE 16.37/17.73 0.169/0.837 0.595/0.073

Ours

Li
∗ 16.16/20.56 0.187/0.852 0.602/0.077

Li 21.28/21.98 0.334/0.874 0.463/0.068
Ls+Li 24.09/24.85 0.382/0.920 0.442/0.051
Ls 23.89/24.46 0.411/0.929 0.428/0.049



Table S4. Compasrison to Spk2imgNet and RSIR.

Method
Light intensity (16) Light intensity (32) Light intensity (64)

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS
Spk2imgNet-finetuned 13.38 0.712 0.121 14.78 0.749 0.100 16.92 0.793 0.091
Spk2imgNet-retrained 13.60 0.718 0.114 14.98 0.756 0.095 17.16 0.806 0.081

RSIR(w=32,c=8) 14.58 0.754 0.087 16.49 0.906 0.072 19.58 0.848 0.071
RSIR(w=64,c=4) 14.71 0.757 0.088 16.42 0.794 0.083 19.51 0.846 0.071

RSIR(w=256,c=1) 14.69 0.757 0.088 16.46 0.803 0.076 19.48 0.846 0.071
Ours 19.38 0.880 0.050 23.66 0.926 0.050 24.46 0.929 0.049

Table S5. Ablation of the nonuniformity matrix.

Method
Light intensity (16) Light intensity (32) Light intensity (64)

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS
TFP 16.41 0.794 0.088 18.68 0.835 0.077 21.27 0.852 0.081
TFI 16.63 0.793 0.093 18.53 0.825 0.083 20.56 0.852 0.077

Ours(w/o R, w=256) 16.23 0.819 0.052 19.66 0.886 0.048 23.67 0.910 0.058
Ours(w=256) 19.38 0.880 0.050 23.66 0.926 0.050 24.46 0.929 0.049

Table S6. Comparisons on different sequence lengths.

Method
Light intensity (16) Light intensity (32) Light intensity (64)

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS
Ours(w=32) 16.94 0.767 0.145 25.29 0.894 0.059 23.74 0.909 0.054
Ours(w=64) 20.59 0.876 0.053 25.92 0.918 0.053 23.18 0.915 0.056

Ours(w=128) 19.77 0.879 0.052 25.93 0.925 0.050 23.85 0.922 0.052
Ours(w=256) 19.38 0.880 0.050 23.66 0.926 0.050 24.46 0.929 0.049



ch
ai
r

Spike Scene TFP(w=32) TFP(w=256) TFI Spk2img Ours

fi
cu
s

h
o
td
o
g

le
go

m
at
er
ia
ls

m
ic

Figure S3. Quantitative results on synthetic spike data.
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Figure S4. Quantitative results on synthetic spike data.



to
ys

Spike Spk2imgTFI TFP Ours

gr
id

b
o
x

to
ys
_2

b
o
tt
le

Figure S5. Quantitative results on real-world spike data.
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