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Abstract

In supplementary material, we provide more details, dis-
cussions and experiments for the paper “Task-Customized
Mixture of Adapters for General Image Fusion”, encom-
passing the following:

(I) A comprehensive overview of the task-customized loss
functions along with associated comparative experiments,
as detailed in Sec. 7.

(II) More details about the network. This includes the de-
tailed network structure and data flow of TC-MoA, the im-
plementation method of shifted windows, the ablation stud-
ies about network design and the analysis of parameters,
elaborated in Sec. 8.

(III) Additional analysis and discussion concerning the
properties exhibited by different tasks in the experiments
and an exploration into the phenomenon of task-specific
routing, explored in Sec. 9.

(IV) More quantitative results on TNO dataset, as shown
in Sec. 10. And more qualitative results of fused images of
multiple tasks, as presented in Sec. 11.

7. Task-Customized Loss Function

Our network structure accommodates the unique require-
ments of varied tasks, with tailored unsupervised loss func-
tions for each fusion task. In order to generate high-
quality fused images, we impose constraints on the struc-
tural (Lssim), intensity (LPixel), and gradient information
(LGrad) of the fused images for different fusion tasks.

Specifically, for the VIF task, our primary goal is to re-
tain the most distinct high-frequency and low-frequency in-
formation from the source images. With this regard, we
introduce LMaxPixel and LMaxGrad loss functions in this
task. By employing LMaxPixel [35] loss function, the fused
images have more comprehensive shapes of objects in the
dark areas and better color saturation. To maintain gradi-
ent information, we ensure the gradient’s sign (direction)
remains unchanged in all related loss functions to avoid any
unintended gradient confusion.

LV = Laux + Lssim + LMaxPixel + LMaxGrad, (9)

Lssim = λ1(1− SSIM(IFusion, X))

+λ2(1− SSIM(IFusion, Y )),
(10)

LMaxPixel =
1

HW
∥IFusion −max(X,Y )∥1 , (11)

Task Task-Customized
Loss Qabf VIF SSIM Qp Qc Qcb

0.390 0.553 0.400 0.310 0.553 0.413VIF
✓ 0.601 0.726 0.455 0.412 0.637 0.494

0.521 0.601 0.939 0.555 0.541 0.396MEF
✓ 0.645 0.661 0.964 0.598 0.578 0.431

0.473 0.761 0.674 0.482 0.696 0.638MFF
✓ 0.657 0.898 0.679 0.681 0.775 0.718

Table 7. Quantitative results of the task-customized loss functions.
The SSIM metric in MEF task is replaced by MEF-SSIM metric.

LMaxGrad =
1

HW
∥∇IFusion − absmax(∇X,∇Y )∥1 ,

(12)
where Laux is the auxiliary loss to avoid unbalanced learn-
ing of adapters. Lssim represents the loss function based
on the structural similarity (SSIM) metric, where λ1 and
λ2 are set to 0.5. The mean(·), max(·), and absmax(·)
represent functions that compute the element-wise average,
take the maximum selection, and get the maximum abso-
lute value, respectively. The Sobel operator is denoted as
∇. For gradient-related loss functions like LMaxGrad, we
retain the sign of the gradient values.

For the MEF task, the fused images should maintain av-
erage luminance levels while retaining all gradient infor-
mation. This strategy drives us to design LAvgPixel and
LMaxGrad loss functions for the MEF task. Additionally,
we adopt Lmefssim which is specifically designed for the
MEF task, instead of traditional Lssim.

LE = Laux + Lmefssim + LAvgPixel + LMaxGrad (13)

LAvgPixel =
1

HW
∥IFusion −mean(X,Y )∥1 (14)

For the MFF task, each patch of the fused images tends
to depend on one specific source image with the maximum
gradient. This prevents the objects’ edges in defocused ar-
eas from being preserved, thereby affecting the quality of
the fused images. In practicality, we select only one source
patch to calculate the loss function for each patch in fused
images. Therefore, the LMaskPixel and LMaskGrad loss
functions for MFF are designed as,

LF = Laux + Lssim + LMaskPixel + LMaskGrad (15)

LMaskPixel =

2∑
i=1

Mi ◦ ∥IFusion − Ii∥1 (16)

LMaskGrad =

2∑
i=1

Mi ◦ ∥∇IFusion −∇Ii∥1 (17)
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Figure 9. Qualitative comparisons on task-customized loss functions.

where M represents the mask map M ∈ RpH×pW×1,
and i denotes the index of image in source images tuple
(X,Y ). If the patch’s maximum gradient in current image
exceeds the other image, we allot the mask map value of the
location of this patch as 1. Conversely, it is set to 0.

Qualitative and Quantitative Comparisons. We compare
the model trained with task-customized loss functions and
that trained with unified loss function. The unified loss
function follows the PMGI combined with Lssim. The
quantitative results are shown in Table 7, and the qualita-
tive results are reported in Fig. 9. The quantitative results
show that the fused images obtained by our task-customized
loss functions are rich in high frequency and structural de-
tails, conforming to human perception across all tasks. The

qualitative results show that our fused images display su-
perior contrast, color saturation, and textural detail when
compared to images produced by unified loss function. It is
worth noting that previous MFF methods often require post-
processing on the fused images or features to obtain clear
images, but our model can directly reconstruct the fused im-
ages with task-customized loss functions.

8. Details of Network.
Detail Architecture of TC-MoA. We illustrate the detailed
network structure, data flow of the prompt generation and
prompt-driven fusion stages of TC-MoA in Fig. 10.
Details on Fused Results. With each passing TC-
MoA module, the fusion features are added to each net-
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Figure 10. Detail architecture for TC-MoA. The purple box represents the process of generating task-customized prompt, while the green
box illustrates the prompt-driven fusion process. The MIR stands for mutual information regularization constraint. The routing results of
all samples for a specific task by a task-specific router constitute the frequency distribution of the mixture of adapters.
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Figure 11. Workflow of the shifted windows.

work branch according to hyperparameter settings. We con-
sider that the features in each branch increasingly resemble
those of the fused image, and ultimately the outputs of the
two branches to be approximately identical, thus arbitrarily
choosing one branch to obtain the fused image.
Shifted Windows. We integrate windows shifting into the
frozen ViT blocks by incorporating learnable relative posi-
tion embeddings, as shown in Fig. 11. To reduce the compu-
tational cost of transformer, most previous approaches only
support fixed-size inputs. These methods employ additional
pre-processing and post-processing steps to crop and stitch
the image together, resulting in the checkerboard artifacts.
To address this issue, we partition the features into multiple
windows of 14 × 14 patches (to maintain consistency with
the token length during pre-training). Then, we introduce
learnable local position embeddings to enable the model’s

perception of token positions within the windows, ensuring
the model is spatially aware of the local windows. Subse-
quently, we apply cyclic shifts to other blocks, acquiring
a global receptive field. To this end, shifted windows not
only allows for efficiently handling of different input sizes,
but also captures the global receptive field of the image to
effectively avoid checkerboard artifacts.
Ablation Studies about Network Design. We explore the
effect of three network architectures in our framework. The
qualitative results are shown in Fig. 12. i) Predicting images
in isolated windows neglects the inter-window information
exchange, thereby yielding inconsistencies across the entire
image. Our method enables the interaction of information
across the entire image by shifting windows, thereby main-
taining the overall coherence of the image. ii) The trans-
formers are not able to effectively transmit information to
adjacent patches solely based on long-range dependencies,
resulting in the occurrence of the fusion image checker-
board effect. To address this, we introduce local receptive
fields via convolutional layers to enhance the interaction of
local features and alleviate the checkerboard effect between
adjacent patches. iii) Using only gradient constraints with
absolute values can lead the network to blindly learn the
gradients of the image, resulting in the generation of fu-
sion images with incorrect gradient directions, which do not
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Figure 12. Ablation studies about network design.

MEF VIF MFF

𝑋 𝑌 𝑋 𝑌 𝑋 𝑌

0.7961 0.1667 0.7467       0.1607 0.9095 0.0568

0.2042 0.8336 0.2535 0.8396 0.0908 0.9431

0.8148 0.7932 0.9263

0.0375 0.0929 0.0336

Task

Dominant source

Intensity bias of 𝑋

Intensity bias of 𝑌

Average dominant 
intensity bias

Difference between
dominant intensity bias

Figure 13. Statistical analysis of intensity bias in different tasks. The “Average dominant intensity bias” refers to the average value of the
dominant intensity bias for the X and Y sources. The “Difference between dominant intensity bias” denotes to the absolute value of the
difference between the dominant intensity bias of the X and Y sources.

All Parameters
348.7 M

Frozen Trainable
9.58 M (2.82%)

Position
Embedding TC-MoA

9.39 M (2.77%)
Prompt

Generation
Prompt-Driven

Fusion
329.54 M
(97.18%) 0.19 M

(0.06%) 2.15 M
(0.63%)

7.24 M
(2.13%)

Table 8. Detailed statistics of the parameters. The data is sourced
from the TC-MoA model based on ViT-large network structure
with τ = 4 and N = 4.

align with human visual perception. The loss function based
on the signed value of the gradient avoids confusion in the
direction of the gradient.
More Analysis of Parameters. Our network is an efficient
parameter fine-tuning method inserted into the frozen ViT
framework with pre-trained parameters. As depicted in Ta-
ble 8, we use mere 2.77 % trainable parameters to bridge the

gap between pre-trained model and image fusion tasks. The
introduced shifted windows only demand 0.06 % param-
eters, rendering them practically negligible. In TC-MoA,
although we have multiple routing networks and adapters,
a mere 0.63% parameters suffice to generate prompt effi-
ciently. In fact, most of the parameters are contributed by
the convolutional layers in the fusion layer. In addition, our
model offers the potential to further reduce the number of
parameters by compressing the number of channels in the
convolutional layers.

9. Additional Analysis and Discussion
The Properties of Various Fusion Tasks. The properties
of a fusion task, as well as the relationship between mul-
tiple tasks, can be depicted through the task prompt. For
each token pair, if promptx > prompty , then we refer to
X as the dominant source and Y as the auxiliary source.
The dominant intensity bias of X is defined as the average
value of promptx for all token pairs where X dominates.
Conversely, the auxiliary intensity bias of X is the mean
value of promptx for all token pairs where X is the auxil-



Table 9. Quantitative results of the VIF task on TNO dataset.

Method VIF Qc EN SD Qcv↓ MS-SSIM FMI Qw

DeFusion [20] [ECCV’22] 0.513 0.569 6.579 8.862 500.767 0.840 0.900 0.563
DDFM [55] [ICCV’23] 0.276 0.390 6.853 9.219 976.884 0.685 0.878 0.294
MoE-Fusion [3] [ICCV’23] 0.757 0.541 7.008 9.158 743.774 0.901 0.907 0.770
TC-MoA Base 0.748 0.631 7.003 9.335 393.571 0.895 0.911 0.770
TC-MoA Large 0.793 0.659 7.026 9.392 414.068 0.908 0.910 0.772

Table 10. Ablation experiments on the value of K.

VIF MEF MFFHyperparameter
Qabf Qp SSIM Qabf Qp SSIM Qabf Qp SSIM

K = 1 0.608 0.731 0.456 0.655 0.897 0.679 0.652 0.674 0.413
K = 2 0.608 0.739 0.458 0.656 0.896 0.678 0.649 0.665 0.411
K = 3 0.610 0.734 0.457 0.656 0.898 0.679 0.652 0.669 0.413
K = 4 0.609 0.736 0.457 0.658 0.897 0.680 0.653 0.669 0.413

iary source. As shown in Fig. 13, for an instance, the domi-
nant and auxiliary intensity biases of X for the VIF task are
0.7467 and 0.1607, respectively.

Fig. 13 reveals two fusion patterns: 1) The mean domi-
nant intensity bias for MFF is higher than those of MEF and
VIF. This indicates that fused images from MFF tasks typ-
ically draw information heavily from one source image per
token pair, rendering the fusion for MFF extremely unbal-
anced at the token-level. In contrast, MEF and VIF display
a more balanced fusion. From a token-level fusion perspec-
tive, MEF and VIF tasks share more similarity. 2) The dif-
ference between dominant intensity bias of VIF is signifi-
cantly larger than that of the other fusion tasks. For the VIF
task, when the infrared images (Y source) dominate, the
dominant intensity bias is found to greatly surpass that of
the visible images (X source). Once the network identifies
the dominance of infrared images, it assigns higher weights
to its features. This results in VIF being more unbalanced at
the source-level, while MEF and MFF exhibit more balance.
We believe that part of the reason for this phenomenon is
that the LLVIP dataset for the VIF task, composed primar-
ily of nocturnal scenes, where infrared images might pro-
vide more information than visible images.

To this end, the average dominant intensity bias reflects
the fusion pattern of the tasks at the token-level, while the
difference between dominant intensity bias illustrates the
pattern at the source-level. The empirical evidence of our
method shows variations and connections among these fu-
sion tasks, thus demonstrating our effectiveness in handling
multiple fusion tasks with a unified model.
Details of Task-Specific Routing. Different task-specific
routers indeed customized various mixtures of adapters, as
shown in Fig. 14. The following patterns can be observed:
1) For the VIF task, if source X is the dominant source on
one token pair, it is inclined to utilize the yellow adapter for
processing. Conversely, the green adapter is primarily used
when source Y predominates. 2) For the MEF task, the

blue adapter is used when source Y is the dominant source.
Other colored adapters are utilized under conditions where
source X is dominant. 3) For the MFF task, the yellow
adapter tends to deal with cases where X dominates, while
red and green tend to address situations where Y is dom-
inant. Notably, high-frequency areas are more frequently
handled by the red adapter, while low-frequency areas are
inclined to handle by the green adapter.

Obviously, by task-specific routing, the network tends to
select different mixtures of adapters to accommodate vary-
ing tasks. Therefore, these adapters have task tendencies
and different divisions of labor (such as high and low fre-
quency works). This is an interesting finding that can be
further explored for more controllable fusions.
Analysis on Top K. We performed ablation experiments on
the value of K under four adapters, as shown in Table 10.
The following two findings can be observed: i) the more the
number of experts chosen for routing, the better the overall
performance. Intuitively, the more adapters are routed to,
the greater the dynamism of the network, and consequently
the better the performance, which is consistent with empir-
ical results. ii) The choice of K has a minor impact on per-
formance, indicating that the network is not sensitive to this
parameter. In summary, we have struck a balance between
performance and inference cost by setting Top K = 2.

10. More Quantitative Comparisons

TNO Dataset. Table 9 shows additional results on TNO
dataset. Our method achieves superior overall performance
compared with the most recent methods.

11. More Qualitative Comparisons

More qualitative results of various fusion tasks are pre-
sented in Figs. 15 to 17. In the case of the VIF task,
our fusion results maintain the detailed information of the
visible images to the greatest extent (such as license plate
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Figure 14. The visualization of adapter selection for the last TC-MoA in the ViT encoder. We visualize the index of the adapters with the
highest routing weight as the adapter map. Different colors in the adapter map represent the selection of different adapters. It is worth
noting that this is the adapters selection situation of the last TC-MoA in the encoder, which can only reflect the general trend and may
contain unclear noise.

numbers), while clearly highlighting the information from
the infrared images. The overall images possess excellent
brightness and contrast. For the MEF task, our fusion re-
sults adequately preserve the detailed structural and color
information from both sources, especially avoiding blurry
halos in overexposed areas. In terms of the MFF task, our
model avoids distortions in structural details and color, par-

ticularly in the areas with text. In terms of the overall vi-
sual perception, our method is comparable to the IFCNN on
MFF, a supervised training method. In addition, our method
provides a substantial degree of fusion controllability, mak-
ing it practicable to manipulate fusion results based on par-
ticular requirements.
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Figure 15. More qualitative comparisons in the VIF task.
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Figure 16. More qualitative comparisons in the MEF task.
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Figure 17. More qualitative comparisons in the MFF task.


