
Watermark-embedded Adversarial Examples for

Copyright Protection against Diffusion Models

Supplementary Material

A. Image Generation under Other Scenarios

A.1. DreamBooth

In this experiment, we evaluate the performance of our
method on DreamBooth [43] which is another method to
personalize text-to-image models. Given a few (3-5) images
of a subject, DreamBooth fine-tunes the pre-trained text-to-
image model to learn a unique identifier for that subject. Af-
ter the fine-tuning, we can use the unique identifier to gener-
ate contextualized images of the subject in different scenes,
poses, and views. We perform the DreamBooth fine-tuning
by using the Python library diffusers 5 on both the original
images and adversarial examples. We set the resolution to
512, the learning rate to 2 ⇥ 10�6 and the maximum num-
ber of train steps to 2000. The steps and parameters used to
generate our adversarial example are the same as those used
in other image generations in Section 3.4.

Visualization examples are shown in Figure 7. We com-
pare the results generated from the original images with
those from our adversarial examples. For the original im-
ages, the features of the input images can be learned and
used to generate new images. On the other hand, after ap-
plying our attack, images are generated with visible water-
marks and chaotic textures. Therefore, our method is also
applicable to DreamBooth settings to protect copyrights.

A.2. LoRA Fine-tuning

Low-Rank Adaptation (LoRA) [20] is a method initially
proposed for fine-tuning large-language models. It freezes
pre-trained model weights and injects trainable layers in
each transformer block. In the case of fine-tuning diffusion
models, LoRA can be applied to the cross-attention layers
that relate the image representations with their correspond-
ing prompts. We perform the LoRA fine-tuning by using
the Python library diffusers on both the original images and
our adversarial examples. We set the resolution to 512, the
learning rate to 10�4, the maximum gradient norm to 1.0
and the maximum number of train steps to 2000.

Visualization examples are presented in Figure 8. We
compare the results generated from the original images with
those generated using our adversarial examples. For the
original images, although the effectiveness of LoRA fine-
tuning is not as pronounced as that of textual inversion and
Dreambooth, the features of the input images can still be
extracted to generate new images. On the other hand, after

5https://github.com/huggingface/diffusers

applying our attack, the resulting images exhibit visible wa-
termarks and chaotic textures. Consequently, our method
could be effective in LoRA fine-tuning settings for copy-
right protection purposes.

A.3. Custom Diffusion

Custom Diffusion [4] is another fine-tuning technique for
personalizing image generation models. Given a few (4-5)
example images, Custom Diffusion works by only training
weights in the cross-attention layers, and it uses a special
word to represent the newly learned concept. We perform
the Custom Diffusion by using the Python library diffusers
on both the original images and our adversarial examples.
We use single-concept fine-tuning and set the resolution to
512, the learning rate to 10�5 and the maximum number of
train steps to 250.

Visualization examples are presented in Figure 9. We
compare the results generated from the original images with
those generated using our adversarial examples. For the
original images, the features can be learned and utilized to
generate new images. In the case of the adversarial exam-
ples, although no explicit watermark is visible on the gener-
ated images, many generated images contain irrelevant text,
and many generated content appears distorted and unnatu-
ral. Despite the outcome being different from our intended
target, our method still demonstrates potential for prevent-
ing image imitation under the Custom diffusion.

B. Implementation Details of the Model

Generator architecture We adopt the naming conven-
tions established by [22, 64]. Here, dk refers to a 3 ⇥ 3
Convolution-InstanceNorm-ReLU layer with k filters and
stride 2. The notation Rk represents a residual block that
contains two 3⇥3 convolution layers with the same number
of k filters. Lastly, uk signifies a 3 ⇥ 3 fractional-strided-
Convolution-InstanceNorm-ReLU layer with k filters and a
stride of 1/2.

The generator is composed of the following layers:
• The encoder consists of a series of downsampling layers:
d64, d128, d256.

• This is followed by a series of residual blocks:
R256, R256, R256, R256.

• The decoder then upsamples the feature maps: u128, u64.
• The final layer of the generator is a 3 ⇥ 3 Convolution-

Tanh layer with the number of output channels corre-
sponding to the image’s number of channels.

O
rig

in
al

A

tta
ck

(O
ur

s)

An oil painting of [V] A photo of [V] on a boat Input images → [V] An oil painting of [V] A photo of [V] on a boat Input images → [V]

Figure 7. Comparison between the original result and our attack result under DreamBooth on ImageNet. The watermarks used in the
examples are IMAGENET CAT and IMAGENET DOG.

O
rig

in
al

A

tta
ck

 (O
ur

s)

An oil painting of [V] A photo of [V] on a boat Input images → [V] An oil painting of [V] A photo of [V] on a boat Input images → [V]

Figure 8. Comparison between the original result and our attack result under LoRA fine-tuning on ImageNet. The watermarks used in the
examples are IMAGENET CAT and IMAGENET DOG.

Discriminator architecture We utilize a convolutional
neural network (CNN) structure inspired by [40]. The no-
tation Ck indicates a 4 ⇥ 4 Convolution-LeakyReLU layer
with k filters and stride 2. We do not apply Instance Nor-
malization to the first layer of the discriminator. Leaky Re-
LUs are used with a negative slope of 0.2.

The discriminator is composed of the following layers:

• A series of convolutional layers with increasing filter
sizes: C64, C128, C256, C512, C1024.

• The final convolutional layer is a 16 ⇥ 16 Convolution
layer that outputs a single feature map.

• A Sigmoid activation function is applied to the output
of the last layer to obtain a probability value indicating
whether the input image is original or adversarial.

C. More Results of Text-guided Image-to-

image Generation

C.1. Results under Different Strength Value

The strength parameter plays a crucial role in image-to-
image generation. It determines the level of noise that is
added to the original image while generating new images.
A small strength value will produce an image nearly identi-
cal to the original, while a large strength value will produce
an image that largely differs from the original. We explore
the change in the watermark on the generated images with
different strength values. As shown in Figure 10, NCC re-
mains at a high value when the strength is smaller than 0.4
and drops after that. We also observe that when the strength
is increased to 0.55, the content of the generated image is
already far from the original one, which makes it difficult

O
rig

in
al

A

tta
ck

 (O
ur

s)

An oil painting of [V] A photo of [V] on a boat Input images → [V] An oil painting of [V] A photo of [V] on a boat Input images → [V]

Figure 9. Comparison between the original result and our attack result under Custom Diffusion on ImageNet. The watermarks used in the
examples are IMAGENET CAT and IMAGENET DOG.

N
CC

Strength

Original Strength 0.05

Strength 0.30 Strength 0.55

0.1 0.2 0.3 0.4 0.5 0.6

0.4

0.3

0.2

0.1

NCC of our method

Figure 10. The influence of strength parameter on the visibility of
watermark under image-to-image generation.

to identify as a copyright violation. Therefore, we focus on
the setting with a strength smaller than 0.5, and our method
can successfully attack DMs under this setting.

C.2. Results under Varied Prompts

For text-guided image-to-image generation, the ideal ap-
proach is to use varied prompts to guide the generation of
new images. However, with thousands of diverse test im-
ages, preparing individual prompts for each image is time-
consuming. Consequently, we used a uniform prompt for
both training and inference.

On the other hand, to explore the influence of different
prompts, we evaluated 40 images with 5 varied prompts per
image. The Normalized Cross-Correlation (NCC) results
between the generated images and the watermark were sim-
ilar for both fixed prompts (0.31) and varied prompts (0.30).
This similarity may be due to the strength parameter be-
ing the primary determinant of the level of noise added,
while the prompts merely guide the noise during genera-
tion. Therefore, even with varied prompts, the watermarks

on the generated images remain almost unchanged when the
strength parameter is constant.

D. More Visualization Examples

D.1. Text-guided Image-to-Image Generation

We show more examples under image-to-image generation
in Figure 11. The experimental settings remain consistent
with those in Section 4.2. Compared to the existing meth-
ods that only add chaotic content, our method adds visible
watermarks, providing a more straightforward way to show
copyright violations.

D.2. Textual Inversion

We show the comparison result between our method and
the previous methods under textual inversion in Figure 12.
The experimental settings remain consistent with those in
Section 4.3. The previous methods could encourage DMs
to generate images that are far from the original ones (Ad-
vDM) or with large artifacts (Mist). However, such changes
are not straightforward enough to indicate copyright viola-
tions. Our method succeeds in compelling DMs to generate
images with obvious watermarks, demonstrating a simple
yet powerful way to prevent copyright violations.

D.3. Transferability on Other Generative Models

We show more visualization examples of this setting in Fig-
ure 13. All examples follow a similar trend in that our
method can add visible watermarks to the generated images
for most models. For Runway, although there is no obvi-
ous watermark, our method still forces the models to gen-
erate images that differ from the original ones. Our method
exhibits good transferability and can attack various image-
generation models.

O
rig

in
al

A

dv
D

M
M

ist

O
ur

s
Source Generated Source Generated Source Generated

Figure 11. More examples of text-guided image-to-image generation on WikiArt.

E. Settings of Other Generative Models

Stable Diffusion 1.5 (SD 1.5)
6 is a latent text-to-image dif-

fusion model capable of generating realistic images. It can
also be applied to image-to-image generation by passing a
text prompt and an initial image to condition the generation
of new images. We use the text prompt “A painting” for the
WikiArt dataset, and “A photo” for the ImageNet dataset.
We set the sampling methods to DPM++ 2M Karras, the
sampling steps to 50, and the strength to 0.30 as default.
Please note that this is the model we used to generate our
adversarial examples.
Dreamshaper 8

7 is a fine-tuned version of Stable Diffu-
sion that addresses some of its limitations. It improves the
convergence speed, handles high-dimensional data, and is
more robust to noise. We conduct the experiments under
image-to-image generation and set the sampling method to
DPM++ 2M Karras, the steps to 40, the guidance to 10, and
the strength to 0.30 as default.

6https://huggingface.co/runwayml/stable-diffusion-v1-5
7https://civitai.com/models/4384/dreamshaper

NovelAI
8 is a service that creates unique stories with vir-

tual companionship. It also has the potential to raise con-
cerns about copyright violations. We conduct experiments
under the image-to-image generation scenario in NovelAI.
We use the text prompt “A painting” for the WikiArt dataset,
and “A photo” for the ImageNet dataset. We set the resolu-
tion to 512, the sampling method to DPM++ 2M, the steps
to 40, the guidance to 10, and the strength to 0.30 as default.
Runway AI magic tools

9 provides various creative tools
to ideate, generate and edit images and videos. We conduct
experiments under image variation in this tool. Since there
is no parameter that can be adjusted, we directly input our
images into this tool and obtain the generated image.

8https://novelai.net/
9https://runwayml.com/ai-magic-tools/image-to-image/

O
rig

in
al

A

tta
ck

(O
ur

s)

A painting of !∗ A photo of !∗Input images → !∗ A painting of !∗ A photo of !∗Input images → !∗
A

dv
D

M
M

ist

Figure 12. Comparison between our method and the previous methods under textual inversion on WikiArt.

SD 1.5 NovelAISource Runway Dreamshaper 8

O
rig

in
al

A

tta
ck

(O
ur

s)

O
rig

in
al

A

tta
ck

(O
ur

s)

Figure 13. More examples of black-box attack under image-to-image generation using various models or tools.

	. Introduction
	. Related Works
	. Generative Diffusion Models
	. Image Watermarking
	. Adversarial Examples for Generative models

	. Proposed Method
	. Problem Statement
	. Architecture Overview
	. Loss functions
	. Image Generation under Different Settings

	. Experiments
	. Experimental Settings
	. Text-guided Image-to-Image Generation
	. Textual Inversion
	. Ablation Study
	. Robustness of adversarial examples
	. Transferability on Other Generative Models

	. Conclusion
	. Image Generation under Other Scenarios
	. DreamBooth
	. LoRA Fine-tuning
	. Custom Diffusion

	. Implementation Details of the Model
	. More Results of Text-guided Image-to-image Generation
	. Results under Different Strength Value
	. Results under Varied Prompts

	. More Visualization Examples
	. Text-guided Image-to-Image Generation
	. Textual Inversion
	. Transferability on Other Generative Models

	. Settings of Other Generative Models

