
Improving Graph Contrastive Learning via Adaptive Positive Sampling

Supplementary Material

A. Graph Augmentations and Encoders
Graph Augmentations. Graph augmentation plays a cru-
cial role in enhancing the representation capacity of graph
contrastive learning (GCL) by capturing important invari-
ant information. The augmentation techniques used in the
baseline GRACE include masking attributes and edge dele-
tion. To be specific, it randomly masks node attributes and
deletes edges of initial graphs at each iteration step to gen-
erate the augmented graphs.
Encoders. In GCLs, the encoder is responsible for trans-
forming the input graph data into a lower-dimensional fea-
ture. The graph encoder in the baseline GRACE consists of
a two-layer Graph Convolutional Network (GCN), which is
formulated as

H = �(Ã · �(Ã ·X ·W
(0)) ·W(1)). (E.1)

where �(·) stands for the nonlinear activation function, such
as ReLU(·). Ã denotes the the adjacency matrix subjected
to symmetric normalization. W(i) represents the parameter
matrix in the i-th layer.

B. Algorithm Description
The self-expressive learning objective, which is formulated
as Equation 5, can be solved via augmented lagrangian mul-
tipliers (ALM) [1]. This can be expressed as
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where hX,Yi = Tr(XY
>) terms the inner product of ma-

trix X and Y, and C and D denote two auxiliary variables,
which is introduced to enhance the representation ability of
the matrix S. And Y1,Y2,Y3 and Y4 represents four La-
grangian multiplier variables. µ > 0 denotes an additional
parameter.

The above objective function can be optimized via Al-
ternating Direction Methods of Multipliers (ADMM) [2].
ADMM alternately updates Z,S,C,D,E alternately while
fixing others. The details are presented in Algorithm 1.

C. Proof for Theorem 1
Theorem 1. The affinity matrix M, which is generated by
optimizing Equation (5), satisfies the BDP in Definition 1.

Algorithm 1: Self-expressive Learning Framework
Data: Node features H 2 Rn⇥d;

Input: The number of blocks k, parameters � and �,
the maximum number of iterations #maxI;
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Since the nonnegative and symmetric constraints
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Proof. First of all, the objective function falls into the gen-
eral subspace clustering problem, that is,

min
Z

�(Z, H) s.t.H = ZH (E.3)

Secondly, based on the Enforced Block Diagonal (EBD)



condition in [3], it is not difficult to verify that for any per-
mutation matrix P, the above equation satisfies �(Z,H) =
�(PZP

>,PH).
Finally, each section of the above equation has a unique

solution, which is presented in Algorithm 1. It indicates that
this equation has a unique solution M. To sum up, based
on the Theorem 3 in [3] and the above explanations, it is
concluded that the affinity matrix M, which is obtained by
optimizing Equation 5, is block-diagonal.

D. Proof for Theorem 2
Theorem 2. The contrastive loss of HEATS (Lheats) is a
more stringent estimate of mutual information (MI) between
node attributes and embeddings than that of the local base-
line HomoGCL, that is,

Lhomogcl  Lheats  I(X;H, H̃), (E.4)

where X denotes the node attributes, and H and H̃ repre-
sent the node embeddings in two augmented views.

Proof. First of all, the contrastive loss of HEATS (Lheats)
is a lower bound of MI between node attributes and embed-
dings, i.e., Lheats  I(X;H, H̃), as proved below.

The InfoNCE objective can be formulated as
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where the expectation is over n nodes from the joint distri-
bution

Q
v p(hv, h̃v). According to the conclusion in Ho-

moGCL, the InfoNCE is a lower bound of MI, i.e.,

INCE(H; H̃)  I(X;H, H̃) (E.6)

For the contrastive loss of HEATS (Lheats), as defined in
Equation 7, it consists of two parts: L(1)
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Let’s start with one part
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Given the BDP and idempotent property, along with the pro-
posed sparsification operation, the number of positive sam-
ples is far less than that of nodes, i.e., |PM

v | ⌧ n. Due to
any mv,u 2 [0, 1], setting the temperature coefficient ⌧ = 1
for convenience, we have

pov  n · e✓(hv,h̃u), (E.11)
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Moreover, combining Equation E.5, Equation E.11, Equa-
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it can be derived that
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Similarly, we can get that L(2)
heats  INCE(H̃,H). Accord-

ingly, there is
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By combining Equation E.15 and Equation E.6, we estab-
lish the inequality Lheats  I(X;H, H̃).

Secondly, Lheats is a stricter lower bound of I(X;H, H̃)
than Lhomogcl, as described below. Similar to HEATS, Ho-
moGCL is implemented based on GRACE, and can be for-
mulated as
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where N(v) represents the neighbor node set of node v and
sv,u 2 [0, 1] stands for the saliency value.
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Given that the graph is sparse, we have that |N(v)|  |P
M
v |,

which implies pos  pov . Additionally, it holds that neg �

nev .
Therefore, it can be deduced that

`ho(hv, h̃v)  `ht(hv, h̃v) (E.20)

and
`ho(h̃v,hv)  `ht(h̃v,hv). (E.21)

Thus, there is
Lhomogcl  Lheats (E.22)

In conclusion, we have Lhomogcl  Lheats  I(X;H, H̃).

E. Datasets Description and Statistics
This section presents the details of the benchmark datasets,
which consist of twelve graphs and three image datasets.

E.1. Graphs
Citation network. Cora, CiteSeer, and PubMed are the three
benchmark graph datasets on citation networks [4]. The
nodes represent academic papers, edges indicate citation re-
lationships between papers, node features are encoded using
bag-of-words representations, and node labels indicate the
academic topics of papers.

Reference network. Wiki-CS is a reference network from
Wikipedia categories [5]. The nodes represent Computer
Science articles, edges indicate the hyperlinks between ar-
ticles, node features are calculated as the average of pre-
trained GloVe word embeddings, and the node labels corre-
spond to the branches of computer science.

Co-purchase networks. Amazon Photo (short as Photo)
and Amazon Computers (short as Computers) are two co-
purchase networks collected from Amazon [6]. Nodes rep-
resent products, edges represent the co-purchased relations
of products, and node features are bag-of-words vectors ex-
tracted from product reviews.

WebKB. Cornell, Texas, and Wisconsin are three web-
page datasets1, which are collected from the computer sci-
ence departments of their namesake universities. The nodes
stand for webpages, and the edges stand for hyperlinks be-
tween them. Node features are the bag-of-words representa-
tion of webpages. These webpages are manually classified
into five categories, student, project, course, staff, and fac-
ulty.

Wikipedia network. Chameleon and squirrel are two net-
works on specific topics in Wikipedia [7]. The nodes repre-
sent webpages and the edges are links between webpages.
Node features correspond to several informative nouns in
the web pages, and labels represent the average monthly
traffic of the web pages.

1http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb/

Co-occurrence network. Actor is an actor co-occurrence
network [8]. The nodes corresponding to actors and edges
denote co-occurrence on the Wikipedia page. Node features
terms the keywords in these pages. Labels are the words on
the actor’s Wikipedia.

E.2. Images
CIFAR-10, CIFAR-100, and STL-10 are three image bench-
mark datasets in computer vision. Specifically, CIFAR-10
and CIFAR-100 are designed by the Canadian Institute for
Advanced Research (CIFAR), while STL-10 is developed
by Stanford University. CIFAR-10 contains 60,000 images
of 32x32 pixels, categorized into 10 classes, such as air-
plane and automobile. CIFAR-100 expands it by introduc-
ing a taxonomy of 100 classes, organized hierarchically into
20 superclasses, each containing 5 subclasses. STL-10 con-
sists of 60,000 images of 96x96 pixels, which can be clas-
sified into 10 distinct classes.

F. Introduction of Baselines
Graph Neural Networks (GNNs). GCN, a well-recognized
semi-supervised GNN, learns node representations by em-
phasizing the similarity of the adjacent nodes. GAT, a spa-
tial variant of GCN, introduces a self-attention mechanism
for flexible capturing of the relationships between nodes.
JKNet innovatively integrates representations across layers
to form the final representations, rendering it more flexible
and effective than conventional stacked GCN.

Unsupervised GNNs. (1) Network Embedding models.
DeepWalk and Node2Vec are network embedding models
that employ Random Walk strategies to establish the prox-
imity information in graph structures. Furthermore, Deep-
Walk emphasizes the analogy of random walk paths to sen-
tences to leverage word2vec [9] algorithm, while Node2Vec
enhances the flexibility of the random walk process through
breadth-first search (BFS) and depth-first search (DFS).

(2) Graph Generative models. GAE and VGAE are both
graph-generative models. The former encodes graph struc-
tures into a compact latent space via an autoencoder for effi-
cient graph reconstruction, while the latter introduces a vari-
ational approach with a Gaussian distribution to capture the
uncertainty in the graph structure.

(3) Graph Contrastive Learning models. DGI, MVGRL,
GRACE, GCA, BGRL, and HomoGCL are common base-
line GCL models. Specifically, DGI brings in a local-global
contrastive learning framework by maximizing the mutual
information between the node-level and the graph-level rep-
resentations. MVGRL extends the DGI framework by intro-
ducing graph diffusion techniques and a multi-view mecha-
nism. Inspired by the two-branch contrastive learning (CL)
framework, which is widely employed in computer vision,
GRACE extends it to the graph domain via graph encoders
and graph augmentations such as edge deletion and feature



masking. Moreover, GCA innovates by incorporating adap-
tive augmentation strategies tailored to the graph structure.
Besides, BGRL enhances GCL models through the incor-
poration of the bootstrapped strategy, namely bootstrapping
the output of a delayed version of the encoder. SELENE in-
tegrates node attributes and network structure information
to alleviate the impact of decreasing network homophily ra-
tio. In addition, HomoGCL capitalizes on graph homophily
to expand the positive set using the neighbor nodes that pos-
sess saliency.

G. Experiment setups of image classification
First, the network structure of the proposed variant models
is designed to be consistent with that of the baseline mod-
els. The backbones of the baseline model are ResNet-18
and ResNet-50. The experiments are conducted on three
public image datasets CIFAR-10, STL-10, and CIFAR-100.
Secondly, the network parameters are updated by Adam op-
timizer with the learning rate is 0.0003 and the weight de-
cay rate is 10�6. The dimensions of the hidden layers and
the projection layers are set to 64, and the batch size is
set to 128. The temperature parameter ⌧ is chosen from
{0.1, 0.2, 0.3, 0.4, 0.5}. Thirdly, for the parameters � and
�, which is introduced by the proposed framework, the val-
ues are selected from the set {10�2, 10�3, 10�4

}. For the
CIFAR-10 and STL-10 datasets, the block parameter k is
selected from the set containing all values less than the num-
ber of classes. For the CIFAR-100, the selection of k is
among {10, 20, 30, 40, 50, 60, 70}. For the combination of
these hyperparameters, the grid search strategy is used.



References
[1] Zhouchen Lin, Minming Chen, and Yi Ma. The

Augmented Lagrange Multiplier Method for Exact
Recovery of Corrupted Low-Rank Matrices. CoRR,
abs/1009.5055, 2010. 1

[2] Yu Wang, Wotao Yin, and Jinshan Zeng. Global con-
vergence of admm in nonconvex nonsmooth optimiza-
tion. Journal of Scientific Computing, 78:29–63, 2019.
1

[3] Canyi Lu, Jiashi Feng, Zhouchen Lin, Tao Mei, and
Shuicheng Yan. Subspace clustering by block diag-
onal representation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 41(2):487–501,
2019. 2

[4] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise
Getoor, Brian Galligher, and Tina Eliassi-Rad. Col-
lective classification in network data. AI magazine, 29
(3):93–93, 2008. 3

[5] P Mernyei and C Wiki-CS Cangea. A wikipedia-based
benchmark for graph neural networks. arxiv 2020.
arXiv preprint arXiv:2007.02901, 2007. 3

[6] Oleksandr Shchur, Maximilian Mumme, Aleksandar
Bojchevski, and Stephan Günnemann. Pitfalls of
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