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Figure 1. Visualization of our web-based 3D BAT (v24.3.2) labeling tool. It shows the registered point cloud and five camera images on
the top. On the left side, there are three helper views: top-down view, side view, and front view. The control pane on the right side contains
a download button, an undo button, a drop-down menu to switch between a perspective (3D) and orthographic (BEV) view, a slider to
change the point size, a drop-down menu to choose the dataset and sequence, some checkboxes for filtering the scene and hiding other
annotations, a button to copy labels to the next frame, an auto-label button, a button for active learning, an interpolation button, and a reset
button. In the bottom right corner, all labeled objects are displayed. Each object can be translated, scaled, and rotated using sliders or
keyboard shortcuts. The scaling of an object will change the dimensions in all frames.
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A . Task Definition
A.1. Detection and tracking

Detection and tracking are two crucial perception tasks for
autonomous driving. In 3D object detection, the surround-
ing objects are located with their 3D position, dimensions
(length, width, height), and rotation at each timestamp. In
multi-object tracking (MOT), the correspondences between
different objects are found across timestamps. Objects are
associated temporally and given a unique track ID. The
final detection and tracking output is a series of associated
3D boxes in each frame.

A.2. Cooperative fusion

The cooperative fusion approach combines data from sev-
eral sensors from different perspectives to optimize the de-
tection and tracking performance. Data from roadside cam-
eras and LiDARs is fused with onboard camera and LiDAR
sensor data to prevent occlusions.

B . Problem statement
We consider a cooperative perception system with road-
side and vehicle sensors symbolized by rs s ∈ [C,L] and
vs s ∈ [C,L] notations, respectively. The cooperative sys-
tem introduced in this work uses three infrastructure cam-
eras rCi i ∈ 1, 2, 3 where i denotes the camera IDs, an in-
frastructure LiDAR rL, one onboard vehicle camera vC and
one onboard LiDAR vL. Consequently, the vehicle sensors
produce a set of images vI(t̂) and point clouds vP (t̂), and
the infrastructure sensors produce a set of images rIi(t

′),
and point clouds rP (t

′). Here, t̂ and t′ denote the vehicle
and infrastructure data timestamps respectively. Note that
a small synchronization error is still present though the in-
frastructure and roadside sensors are all synchronized to the
same NTP time server. The average difference in times-
tamps between these two systems E[t̂− t′] is 24.91 ms and
the two data sources are matched in our proposed dataset
using the nearest neighbor matching algorithm.

The objective of cooperative 3D detection is to predict
3D bounding boxes of objects given a set of multi-modal
multi-viewpoint data. Our proposed cooperative detection
model takes the set of images and point clouds as the in-
put X(t) = [vI(t), vP (t), rI1(t), rI2(t), rI3(t), rP1(t)] at
a given time t and predicts the 3D bounding boxes as the
output Ỹ (t). Here, t denotes the shared timestamp after the
matching algorithm. In addition to identifying the boxes’
position, dimensions, and orientation, the proposed model
also predicts the class of the corresponding object. Thus,
we can represent the task of 3D object detection as:

min E
yj ∈Y (t)

[
min

ỹk ∈ Ỹ (t)
dθ (yj , ỹk)

]
(1)

where Y (t) = [y1(t), y2(t), ...] is the set of ground truth 3D
box labels at time t, and Ỹ (t) = [ỹ1(t), ỹ2(t), ...] are the
corresponding predicted 3D boxes. dθ(yj , yk) is a parame-
terized discriminator function which measures the error be-
tween ground truth 3D label yj and the predicted 3D box
yk. Thus, our objective is to reduce the total error.

C . Data anonymization
We anonymize all our camera raw images I =
[vI , rI1, rI2, rI3, rI4] in the roadside and vehicle domain by
obfuscating all license plate numbers and faces. We use a
medium YOLOv5 model [10] for this purpose, which was
pre-trained on 1080p images with labeled license plates and
faces. During training, mosaic augmentation was applied to
teach the model to recognize objects in different locations
without relying too much on one specific context. At infer-
ence, we downscale the input images I from a 1920× 1200
resolution to 640×400 and pad the extra space to 640×640.
A score threshold of 0.1 worked best to detect all private in-
formation. We set the granularity of the blurring filter to a
blur size of 6 for the detected regions and set the ROI mul-
tiplier to 1.1.

D . Further related work
This section compares our proposed 3D BAT v24.3.2 anno-
tation tool and development kit to similar open-source tools.

D.1. Annotation tools

This work proposes our annotation tool 3D BAT v24.3.2,
which supports combining LiDAR point clouds and simul-
taneously labels both the point clouds and images from mul-
tiple views.

3D BAT [27] is an open-source, web-based annotation
framework designed for efficient and accurate 3D annota-
tion of objects in LiDAR point clouds and camera images.
With this tool, 2D and 3D box labels can be obtained, as
well as track IDs. Its key features include semi-automatic
labeling using interpolation of objects between frames. La-
beled 3D boxes are automatically projected into all camera
images, which requires extrinsic camera-LiDAR calibration
data. Selected objects are displayed in a bird’s eye view,
side view, and front view, in addition to a perspective and
orthographic view.

SUSTechPoints [11] is a multi-modal 3D object annota-
tion tool. It first allows the addition of 3D bounding boxes
in point clouds and then updates them in six degrees of free-
dom. It furthermore allows updating bounding boxes’ type,
attributes, and ID to create labeled datasets for detection and
tracking tasks. It also allows users to visualize these boxes
projected onto multiple camera images and lets the user en-
able or disable the point clouds and images for clear visu-
alization. One major advantage of SUSTechPoints is that it



Table 1. Comparison of the proposed 3D BAT v24.3.2 annotation tool with other state-of-the-art 3D annotation tools.
Feature provided or is outstanding Feature unknown or is less important Feature not provided or is limited

Tool 3D BAT
[27]

LATTE
[16]

SAnE [1] SUSTech
POINTS[11]

Label
Cloud[14]

ReBound
[6]

PointCloud
Lab[8]

Xtreme1
[9]

3D BAT
(Ours)∗

Year 2019 2020 2020 2020 2021 2023 2023 2023 2024
Support V2X - - - - - - -
2D/3D cam.+LiDAR fusion - -
AI assisted labeling -
Batch-mode editing - - - - - -
Interpolation mode - - - - - - -
Active learning support - - - - - - -
Label custom attributes - - - - (?)
3D tracking - - -
Support multiple cameras - - - -
HD Maps - - - - - -
Web-based - - - - -
3D navigation -
3D transform controls -
Side views (top/front/side) - - -
Perspective view editing
Orthographic view editing - -
Object coloring - -
Focus mode - - - - -
Support JPG/PNG files - (?) (?) - - - (?)
Keyboard-only support - - - - - - - -
Offline annotation support - - - - - - - -
OpenLABEL support - - - - - - - -
Open-source -
Github stars 580 374 62 670 461 20 - 542 580
Citations 58 36 16 33 16 0 2 0 58
License Custom Apach.

2.0
Apach.

2.0
GPL 3.0 GPL 3.0 Apach.

2.0
- Apach.

2.0
Custom

∗We use the latest release of 3D BAT version v24.3.2.

enables auto box fitting based on the point cloud shape, but
the accuracy of the fitted box is highly dependent on the
point cloud density.

labelCloud [14] is a domain-agnostic, lightweight tool
designed specifically to label 3D objects. It offers two la-
beling modes namely picking and spanning. In the picking
mode, objects with known sizes can be quickly adjusted.
The spanning mode simplifies labeling by reducing the pro-
cess to four clicks. Box dimensions and orientations of ob-
jects on flat surfaces can be efficiently defined.

ReBound [6] is an open source 3D bounding box anno-
tation tool designed to utilize active learning. It supports
loading, visualizing, and extending existing datasets like
nuScenes [5], Waymo [15] or Argoverse 2.0 [17]. Model
predictions can be analyzed and corrected in a 3D view and
exported to specific formats.

PointCloudLab [8] leverages virtual and augmented re-
ality (VR/AR) devices for 3D point cloud annotation. The
annotator utilizes the controller of a HTC Vive to perform
object-level annotations in the 3D point cloud. The immer-
sive visual aid accelerates the labeling speed, improves the
labeling quality, and enhances the labeling experience.

The Xtreme1 [9] labeling tool provides most of the func-
tionalities of SUSTechPoints. In addition to providing auto-
mated 3D labeling, it also provides support for automated
2D detection and segmentation tasks. Furthermore, it also
supports multi-view point cloud data as the input. The tool
also provides an interface for identifying specific errors in
the labeling process, and a mechanism to evaluate different
models on the labeled dataset. Moreover, it uses modern
cloud-based standards, databases, Kubernetes for managing
containers, and GitLab CI automation.

D.2. Development kits

OpenCOOD [19] is an open cooperative detection frame-
work for autonomous driving which supports popular sim-
ulated datasets such as OPV2V [20] and V2XSet [18]. Like
the development kit proposed in this work, OpenCOOD al-
lows data preparation, pre/post-processing, and visualiza-
tion. Furthermore, it also supports training and testing dif-
ferent benchmark models on these simulated datasets. How-
ever, the OpenCOOD development kit only currently sup-
ports simulated datasets. Its full functionality is also limited
to LiDAR-only cooperative perception, and images are only



Table 2. Tracking results of SORT and PolyMOT on drive 41. P = Precision, R = Recall, MT = Mostly Tracked, PT = Partially Tracked,
ML = Mostly Lost, FM = Track Fragmentations

Tracker IDP↑ IDR↑ IDF1↑ Recall↑ Precision↑ GT MT↑ PT↑ ML↓ FP↓ FN↓ IDS↓ FM↓ MOTA↑ MOTP↓
SORT∗[4] 36.313 21.029 26.634 43.235 74.657 3400 5 18 11 499 1920 439 110 15.647 100.185

PolyMOT [12] 68.416 42.559 52.475 46.735 75.130 3400 8 15 11 526 1811 13 30 30.882 102.288

∗ We modify the SORT tracker to track objects in 3D.

Figure 2. Point cloud registration results of an onboard LiDAR
point cloud (orange) and a roadside LiDAR point cloud (blue).

used for visualization. V2V4Real [21] extends the Open-
COOD development kit, to support real-world data and ad-
ditional perception tasks. Furthermore, data augmentation
is also an additional feature that can be enabled when train-
ing the model.

Furthermore, the DAIR V2X [25], proposes their own
development kit, which provides data visualization and
training tools. However, the access to the dataset is lim-
ited geographically. Other development kits, such as the
nuScenes devkit [5] and Rope3D devkit [23], only support
unimodal or single-view point datasets.

In comparison, our proposed development kit allows all
the aforementioned functionalities in both image and Li-
DAR modes. Furthermore, our development kit contains
modules for multi-modal cooperative data augmentation,
while the model training and testing depend on the mmde-
tection framework [7].

E . Point cloud registration details
We first measure the GPS position (latitude and longitude)
of the onboard LiDAR and the roadside LiDAR and con-
vert it to UTM coordinates. For the coarse registration, we
transform every 10th onboard point cloud PV to the infras-
tructure point cloud PI coordinate system using the initial
transformation matrix shown in Eq. 2.

T 0
V I =


r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1

 (2)

The transformation matrix TV I
0 contains as 3x3 rotation

matrix R obtained by the IMU sensor and a 3x1 transla-
tion vector t⃗ obtained by the GPS device. We then apply the
point-to-point ICP for the fine registration to get an accurate
V2I transformation matrix TV I .

PV I = PI ⊕ (PV · TV I) (3)

Fig. 2 shows the point cloud registration results in two col-
ors. The vehicle point cloud is displayed in orange, and the
infrastructure point cloud is displayed in blue. We get an
RMSE value of 0.02 m, which shows how well the point
clouds were registered.

F . Dataset labeling
We provide a web-based labeling platform 3D BAT v24.3.2
to facilitate the development of V2X perception. It provides
a one-click annotation feature to fit an oriented bounding
box to a 3D object. It contains an interpolation mode that
reduces the labeling time significantly and lets the user visu-
alize the HD Map, which is highly beneficial for positioning
3D box labels accurately within lanes. The user interface of
3D BAT v24.3.2 is split into two main views: the upper
portion displays the camera images captured by both infras-
tructure and vehicle-mounted cameras, while the lower por-
tion renders the registered point cloud data obtained from
the roadside and onboard LiDARs. The annotator first navi-
gates the point cloud to identify objects of interest. Upon se-
lecting an object, boxes are enclosed around it. These boxes
are color-coded according to the object category (e.g., car,
truck, trailer, van, motorcycle, bus, pedestrian, bicycle, and
others) to allow for easy differentiation. After placing the
3D bounding box, they cross-check the predicted 2D bound-
ing boxes in the camera images to ensure their correctness.
Additional attributes can be modified and specified for each
object on the right-hand side.

G . Implementation details
Here, we provide detailed information about the train-
ing schedule and the hyperparameters. We train our
CoopDet3D model in two stages. In stage one, we pre-train
the PointPillars backbone on onboard and roadside point
clouds for 20 epochs. Then, in stage two, we finetune the
model for eight further epochs on cooperative camera and
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Figure 3. Tracking results on drive 42 test sequence of the TUMTraf-V2X dataset. From top to bottom: CoopDet3D detections, CoopDet3D
detections tracked by SORT, CoopDet3D detections tracked by PolyMOT, ground truth. a-c) Tracking results projected into roadside camera
images. d) Tracking results visualized in vehicle camera. e) Visualization of tracks in a point cloud and the HD map. f) Bird’s eye view
projection of tracks in a point cloud and the HD map. g) Visualization of all detected classes and their tracks on an HD map.

LiDAR data. For the detection head, we use TransFusion
[2] to obtain 3D bounding box predictions. To calculate
the matching cost Cmatch, it uses a weighted binary cross
entropy loss Lcls, a weighted L1 loss for the 3D box regres-
sion Lreg , and a weighted IoU loss LIoU [26] (see Eq. 4).

Cmatch = λ1Lcls + λ2Lreg + λ3LIoU , (4)

where: λ1, λ2, λ3 are the coefficients for the individual cost
terms. Given all matched pairs, a focal loss [13] is com-
puted for the final classification. A penalty-reduced focal
loss [24] is used for the heatmap prediction.

We use the following hyperparameters for training: the
AdamW optimizer with a learning rate of 1 × e−4 and a
weight decay of 0.01, a batch size of 4, a dropout rate of
0.1, the ReLU activation function, and cyclic momentum.
We use the BEV encoder to transform the image into a
BEV representation of 512 × 512 size. The point clouds
are cropped to the following range: [−75, 75] m for the X
and Y axis, and [−8, 0] m for the Z axis. For training, we
use 3 x NVIDIA RTX 3090 GPUs.

H . Metrics

This section presents the evaluation metrics for two main
tasks in V2X perception, i.e. the Cooperative 3D Ob-
ject Detection (C3DOD) task and the Cooperative Multi-
ple Object Tracking (CMOT) task. Notably, we adopt the
mainstream metrics for the cooperative perception evalu-
ation to make fair comparisons with the vehicle-only and
infrastructure-only algorithms.

Table 3. Evaluation results (mAPBEV and mAP3D) of
CoopDet3D on our TUMTraf-V2X test set in south1 FOV.

Config. mAPBEV ↑ mAP3D ↑
Domain Modality Easy↑ Moderate↑ Hard↑ Avg.↑
Vehicle Camera 46.83 39.31 12.42 4.29 35.02
Vehicle LiDAR 85.33 77.30 31.26 53.76 76.68
Vehicle Cam+LiDAR 84.90 77.29 34.29 39.71 76.19
Infra. Camera 61.98 41.13 15.64 1.35 37.09
Infra. LiDAR 92.86 82.16 45.14 46.56 81.07
Infra. Cam+LiDAR 92.92 85.43 49.10 49.56 84.13
Coop. Camera 68.94 52.04 29.26 10.28 49.81
Coop. LiDAR 93.93 84.61 50.00 53.78 84.15

Coop. Cam+LiDAR 94.22 84.50 51.67 55.14 84.05

H.1. 3D Object Detection

As the most commonly utilized metric in 3D object detec-
tion tasks, mean Average Precision (mAP) (Eq. 5) takes the
mean value of Average Prevision (AP) generally over the
categories C of interest. We follow the approach of posi-
tive sample matching, introduced in nuScenes [5], leverag-
ing 2D distance thresholds D on the ground plane between
ground truth and prediction center positions, instead of us-
ing the intersection over union (IoU), to define a match (true
positive). We match predictions with ground truth objects
with the smallest center distance up to a certain threshold.
For a given match threshold we calculate the Average Preci-
sion (AP) by integrating the recall-precision curve for recall
and precision > 0.1. We finally average overmatch thresh-
olds of D = {0.5, 1, 2, 4} meters and compute the mean
across all classes.

mAP =
1

|C||D|
∑
c∈C

∑
d∈D

APc,d (5)
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Figure 4. Visualization of drive 07 of the TUMTraf-V2X dataset. In this example, the ego vehicle is occluded by two busses and two large
trucks. The roadside sensors enhance the perception range, making traffic participants behind the buses visible. In total, this ten-second-
long sequence contains 2,790 labeled 3D objects during the daytime.
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Figure 5. Visualization of drive 12 of the TUMTraf-V2X dataset. This sequence with 3,273 3D boxes shows multiple occlusion scenarios.
In one scenario a truck is occluding multiple pedestrians. The roadside sensors can perceive the objects behind the truck so that the ego
vehicle becomes aware of them.
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Figure 6. Visualization of drive 15 of the TUMTraf-V2X dataset. In this drive, a bus is occluding a car which the roadside sensors can
perceive. This is the largest sequence during daytime with 3,442 labeled 3D objects.
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Figure 7. Visualization of drive 22 of the TUMTraf-V2X dataset. In this drive, many vehicles are performing a U-turn maneuver and
occlude some pedestrians waiting at a red traffic light. The pedestrians are within the field of view of the roadside sensors and can be
perceived. This sequence contains 3,084 labeled 3D objects.
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Figure 8. Visualization of drive 26 of the TUMTraf-V2X dataset. In this drive, multiple trucks and trailers occlude traffic participants.
These traffic participants are visible from the elevated roadside cameras and LiDAR mounted on the infrastructure. This sequence contains
2,888 labeled 3D objects.
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Figure 9. Visualization of drive 33 of the TUMTraf-V2X dataset. In this scenario, a truck is occluding multiple objects that can be perceived
by the roadside camera and LiDAR. Here, 2,154 3D objects were labeled.
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Figure 10. Visualization of drive 41 of the TUMTraf-V2X dataset. In this example, a motorcyclist is overtaking the ego vehicle that gives
way to pedestrians crossing the road. This sequence contains 3,400 labeled 3D objects and eight different object categories. Cars and
pedestrians are highly represented, with 1,100 and 800 instances.
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Figure 11. Visualization of drive 42 of the TUMTraf-V2X dataset. This night scene contains a traffic violation and is the largest sequence
in the dataset, with 3,933 3D objects. A pedestrian runs the red light after a fast-moving vehicle has crossed the intersection. This sequence
contains six labeled object classes with 2,833 cars and 600 pedestrians.
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Figure 12. Visualization of drive 44 of the TUMTraf-V2X dataset. This night scene shows a scenario, in that the ego vehicle is braking to
avoid two pedestrians crossing the street in front of it. This scene contains 2,547 labeled 3D objects and is the only sequence that contains
100 labeled emergency vehicles.
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Figure 13. Visualization of drive 53 of the TUMTraf-V2X dataset. This night scene shows a scenario, in that the ego vehicle is performing
a U-turn. This scene contains 1,871 labeled 3D objects.

Table 4. Evaluation results (mAPBEV ) of the CoopDet3D and
CoopCMT model on our TUMTraf-V2X test set in south2 FOV.

Config. mAPBEV ↑
Domain Modality CoopDet3D CoopCMT

Vehicle Camera 46.83 81.21 (+34.38)
Vehicle LiDAR 85.33 86.88 (+1.55)
Infra. Camera 61.98 79.50 (+17.52)
Infra. LiDAR 92.86 93.18 (+0.32)
Infra. Cam+LiDAR 92.92 93.63 (+0.71)
Coop. LiDAR 93.93 94.27 (+0.38)

H.2. Multi-object tracking

Multiple Object Tracking Accuracy (MOTA) and Multiple
Object Tracking Precision (MOTP) are the most widely
used metrics to evaluate tracking performance. MOTA
(Eq. 6) considers the main factors affecting tracking perfor-
mance including False Positives (FP), False Negatives (FN),
and ID Switches (IDS). GTt is the number of ground truth
objects at time t.

MOTA = 1−
∑

t(FPt + FNt + IDSt)∑
t GTt

(6)

MOTP (Eq. 7) is used to measure the precision of the
tracked object’s position, where dit and ct represent the dis-
tance between the predicted object and its actual position at
time t and the number of matches at time t respectively.

MOTP =

∑
i,t d

i
t∑

t ct
(7)

IDP and IDR are the ID precision and recall measuring the
fraction of tracked detections that are correctly assigned to a
unique ground truth ID. The IDF1 metric is the ratio of cor-
rectly identified tracked detections over the average num-
ber of ground truth objects (GT). The basic idea of IDF1
is to combine IDP and IDR into a single number. In ad-
dition, each trajectory can be classified as mostly tracked

(MT), partially tracked (PT), and mostly lost (ML). A tar-
get is mostly tracked if it is successfully tracked for at least
80% of its life span, mostly lost if it is successfully tracked
for at most 20%. All other targets are partially tracked.

I . Further experiments

We extend our experiments to consider multiple FOVs,
baseline models, and different tasks made possible through
the proposed TUMTraf-V2X dataset.

I.1 . CoopDet3D

Previously we discussed the performance of the proposed
CoopDet3D model with PointPillars 512 2x and YOLOv8
backbones in South2 camera FOV. In Table 3 we show
the quantitative results of the same model in South1 cam-
era FOV. Like the South2 camera FOV, we observe that
the CoopDet3D cooperative model performs better than the
vehicle-only perception model (+7.47 3D mAP). Fig. 15
shows qualitative results of CoopDet3D on drive 42.

I.2 . CoopCMT

In addition to CoopDet3D, we build another cooperative fu-
sion model: CoopCMT for benchmarking, based on cross-
modal transformers (CMT) [22]. Similar to the proposed
CoopDet3D model, the CoopCMT cooperative perception
model uses separate vehicle and infrastructure backbones
for feature extraction. Then, the extracted infrastructure
and vehicle deep features are concatenated using a Max-
Pooling layer (similar to PillarGrid [3]), and finally passed
onto the 3D detection head. Thus, this architecture is sim-
ilar to the CoopDet3D architecture, where the BEVFusion-
based backbones and head, are replaced with the corre-
sponding counterpart from the CMT model. Note, that since
transformer-based models require a large amount of data to
be trained, the infrastructure backbone was first pre-trained
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Figure 14. Distribution of our TUMTraf-V2X dataset into a) training, b) validation, and c) test set. From top to bottom: We show the
distribution of object classes within each set with the average number of 3D box labels marked in red, the distribution of 3D points for each
category and each set, the labeled distance and class density for each object class and set, a histogram of 3D box densities for each set, and
a histogram of frame densities for each set.
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Figure 15. Qualitative results of CoopDet3D on drive 42 of our TUMTraf-V2X dataset of a night scene. We project the detections into
point cloud scans and camera images. Moreover, we visualize object tracks in a bird’s-eye view and an HD map. Finally, we show the
distribution of detections in a bar chart.

on the TUMTraf Intersection dataset [28], and the vehicle
backbone was pre-trained on the nuScenes dataset [5], to fit
the domain. We compare the performance of the CoopCMT
model with CoopDet3D in Table 4 and see that it outper-
forms the CoopDet3D model in all domains and modalities.

From Table 4, we observe a general trend in which
the CoopCMT cooperative fusion model performs better in
terms of the mAPBEV compared to the CoopDet3D model.
However, it must be noted that the CoopCMT model uses
a transformer-based architecture, and as such, the model
complexity is higher, resulting in slower inference time. For
future research, the CoopCMT model will be studied further
in terms of the model complexity and FPS to ensure that this
model can perform in near real-time and can be deployed on
edge devices.

I.3 . 3D multi-object tracking

Next, we track the CoopDet3D detections in a post-
processing step using two different trackers: SORT [4] and
PolyMOT [12]. The quantitative evaluation results of 15
different metrics are listed in Table 2. We use a distance
threshold of 5 m for the SORT tracker. The PolyMOT
tracker performs best in all metrics except PT and MOTP.
Qualitative results are shown in Fig. 3.

J . Statistics of all drives

Detailed statistics of all labeled sequences are seen in
Figs. 4 to 10 and 13. The last driving sequence (drive 42)
was recorded during nighttime and contains a traffic viola-
tion scenario in which a pedestrian is running the red light.
All other sequences contain daytime traffic with heavy oc-
clusion scenarios. We split our dataset into a training (80%),
validation (10%), and test (10%) set using stratified sam-
pling to get a well-balanced split. The distribution of object

classes of our training, validation, and test set is shown in
Fig. 14.

K . Detailed dataset visualization

We provide detailed dataset visualizations for different chal-
lenging traffic scenarios at an urban intersection, including
tailgating, overtaking, U-turns, traffic violations, and occlu-
sion scenarios. In one scene, a pedestrian runs a red light af-
ter a vehicle is crossing. We show each scenario’s surround-
view images, BEV projections on an HD map, point cloud
visualizations, and a class distribution plot. Visualization
videos for all labeled sequences are provided on our web-
site: https://tum-traffic-dataset.github.
io/tumtraf-v2x.

L . Failure cases and limitations

Failure cases are essential to understand the weakness of our
dataset and model and to provide some guidance for future
work. Note that, for brevity, we do not consider the network
communication latency between the sensors.
We have tested our CoopDet3D model in day and night sce-
narios in different weather conditions. Some future work
will include further tests under harsh weather conditions
such as heavy rain, snow, and fog. Apart from object detec-
tion, cooperative perception poses many other challenges
due to the asynchrony between the vehicle and infrastruc-
ture sensors, and the transmission delay further exacerbates
this issue. While the suggested model may not fully account
for these considerations, it is recommended that future re-
search focuses on addressing these challenges through ex-
tensive live tests.

https://tum-traffic-dataset.github.io/tumtraf-v2x
https://tum-traffic-dataset.github.io/tumtraf-v2x
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